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MULTIPIXEL, MULTIDIMENSIONAL LASER RADAR SYSTEM PERFORMANCE
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Doctor of Philosophy
August 1986

ABSTRACT

Laser radar analyses up to now generally fall into two categories. Single
pixel analyses exist which cover receiver design, target statistics,
atmospheric effects, and the resulting statistical performance
characterizations like probabilities of detection (P ) and false alarm
(PF). Multipixel analyses exist which use various aR hoc target
recognition, identification, and feature extraction schemes based on
intuitive insight or analogies to human perception. The limitation of
these multipixel processors is it is difficult to quantitatively predict
processor performance as a function of various system parameters and the
resolving power in the measurement dimensions like range, Doppler shift,
and angle. The single pixel performance equations can give quantitative
answers to these questions, but only for single pixel measurements. This
thesis bridges these two approaches by proposing physically realistic
target, background, and radar models which allow us to incorporate the
statistics for the single pixel measurements into multipixel probability
density functions and derive quasi-optimal generalized likelihood ratio
processors from the densities.

The thesis proposes simple but realistic models, then derives the
multipixel density functions, the quasi-optimal multipixel processors, and
P -P curves for the processors as a function of the radar parameters and
mJastrement dimension resolving powers. The analyses are for a ranging
radar, but duality arguments are presented which demonstrate how to apply
the results directly to Doppler and range and Doppler radars. Some
analyses are presented which show how the radar's resolution in range and
angle measurement dimensions depend on each other through the radar
equation for the carrier-to-noise ratio, how they interact to affect
performance, and how it is possible to balance performance loss in one
measurement dimension by improved resolution in another.

Thesis length: 141 pages .
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I. INTRODUCTION

A. Laser Radar Overview

The development of lasers with sufficient stability, spectral purity, and

power has allowed system designers to translate much of microwave radar

design directly to the optical wavelength region [1]. Because their

wavelength is so much shorter, laser radars offer spatial, angular, range,

and Doppler shift resolutions far superior to those available with

microwave systems. Although laser systems can take advantage of their

increased resolution in any or all of these dimensions, the increased

spatial and angular resolutions have particularly affected the way

designers present data to the user. With beam diameters of a few

centimeters at the radar optics exit aperture and beam angles measured in

microradians, it is possible to scan the beam over the target and

construct an image of the target, similar to a television (TV) image, from

the radar returns. The color and intensity of the displayed image can

represent reflected intensity, Doppler shift, range, or some combination

of these signal dimensions [2].

With the shorter wavelength of laser systems, there comes a disadvantage

as well. Because the wavelength is so short, most target surfaces are

rough at dimensions on the order of the radar wavelength. So, they

reflect the incident beam with an essentially random phase shift as a

K function of position on the target, producing a phenomenon known as laser

speckle [3]. Laser speckle appears as a graininess in the image of the

target due to self interference among the reflected wave's angular

components. Since it is a self interference, it is independent of signal

co...nents
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strength. It appears even at very high carrier (reflected radar energy)

to noise ratios. Any processing scheme should take into account both

detection noise and speckle noise, both of which degrade image quality.

B. Image and Signal Processing

Laser radars (and some microwave radars as well) have sufficient spatial

resolution that they can build images of targets by making spatially

distributed measurements of the target with a beam of diameter much less

than the target dimensions. Each spatially distinct element of the target

is called a picture element, or pixel. Up to now, analyses for these high

resolution radars have fallen into two general classes: single pixel

statistical signal processing and multipixel image processing.

The single pixel processing work follows the traditional radar and

communication system approaches [4]. This approach models the target and

the radar, derives statistically optimal processors based on the models,

and produces equations for the performance of the processors derived from

the statistics. The advantages of this approach are twofold. First, the

performance equations are in terms of the various laser system design

parameters. This makes it easy to predict how performance will change as

we vary the system parameters. Second, since the processors are

statistically optimal, their performance measures must be bounds on the

performance achievable with any other proposed processor. The

disadvantage of this approach is it is a single pixel analysis. The

processors don't use the information available to them from the spatially

distributed measurements of several pixels.
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The image processing approach, on the other hand, often draws on pattern

recognition and image analysis theory from research in areas like remote

sensing, machine vision, and artificial intelligence [5], [6]. This

approach proposes intuitive algorithms based on these research fields,

and the resulting ad hoc processors make little use of the statistics of

the signals generating the images. The advantage of this approach is many

of the processors seem to work quite well. The disadvantage is it is

incapable of producing performance equations which allow system designers

to predict how changes in the radar parameters will affect performance.

This thesis presents for the first time a method to perform statistical

signal processing based on target and laser models like the single pixel

approach just outlined, but which takes advantage of the multipixel nature

of the targets. The result will be equations for the radar's performance

against spatially distributed or multipixel targets in terms of the
radar's design parameters. These equations are important because they

*give designers a method to perform trades among system parameters and

predict the effect on system performance. With these equations it is

possible, for instance, to trade intensity resolution with range

resolution or spatial resolution with Doppler resolution and predict the

effects on receiver performance. It is not possible to do this directly

with the ad-hoc models. These equations also act as benchmarks against

___ which we can compare the performance of the ad hoc image processing

algorithms researchers will undoubtedly continue to pursue.

C. Problem Statement

We will study the classical radar detection problem [4]. In our detection

V 4 % / %

42%00 .
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problem we will assume we are given a set of directions comprising an

angular uncertainty region, Su, and a corresponding swath of ranges

representing a range uncertainty region, Lu, wherein a target may appear,

as in Figure 1.1. There may or may not be a target in this uncertainty

volume Q L and, if there is, we don't know where it falls within theUU

volume. Our task is to make measurements over the uncertainty volume with

the laser radar and, based on the measurements, decide between two

hypotheses: H, target present, and H0 , target absent. Although we will

try to treat thoroughly general processors, the goal here is to derive

tools to predict the performance of real systems. If necessary, we will

make simplifying assumptions to get results which are useful for existing

systems at the expense of complete generality in the analysis.

D. Thesis Organization

Chapter two of this thesis develops background information on laser radar

systems and target statistical models. It derives a statistical model for

the signal in the intermediate frequency (IF) system of the radar and

J imposes some IF pre-processing used in real laser radar systems. This

chapter also takes the crucial step of presenting a model for the major

characteristics of the target and its environment in a fashion which makes

it possible to incorporate these characteristics into the statistical

signal model.

Chapter three derives a joint probability density function for two of the

most common radar measurements: range and intensity. Chapter three

closes by considering the range-Doppler and range-range and Doppler

dualities which make it possible to do the Doppler and range and Doppler

. .. ...
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system analyses by direct analogy with the range system analysis.

Chapter four introduces the binary detection receiver and the generalized

likelihood ratio and derives optimal and near optimal processors for

several measurement models. Chapter five takes two of the most important

processors from chapter four and derives equations to characterize their

performance.

Chapter six presents numerical and graphical results for the equations in

chapter five. These results demonstrate how the radar performance, in

terms of probability of detection, PD' and probability of false alarm, PF'

varies as a function of the laser design parameters, the target

characteristics, and the type of radar used. Specifically, we will assess

how performance varies as a function of radar resolution capabilities for

several types of radars with laser sources of either constant average or

peak power. The ultimate output of this analysis is the ability to

predict for the first time what sets of design parameters will allow the

radar to meet a given performance level against a multipixel target.

The final chapter summarizes the thesis, draws some conclusions, and

outlines some areas where further research may be profitable.

V, V
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II. LASER RADAR BACKGROUND

A. System Configuration

Figure 2.1 is the simplified block diagram of a coherent laser radar.

This thesis considers only monostatic radars -- the transmitter's exit

optics and the receiver's entrance optics are the same. This could be a

ranging or Doppler radar (or both). The principal differences between

these systems are the transmitted waveforms and the type of intermediate

frequency (IF) processing. For a ranging system, the waveform is usually

as short as possible to give good range resolution. For a Doppler system,

the waveform may be continuous wave (CW) or a long pulse. It is possible

to time-share both measurements with an appropriate choice of waveform

[7]. The radar performs a raster scan of the transmitter beam as shown in

figure 2.2. The scan rates are such that there is minimal beam overlap

between adjacent pixels. The radar may be on a truck, an aircraft, or

elsewhere. For the air-to-ground imaging situation, the radar is above

and looking down on the target. This imposes a specific laser-target

geometry, which we will introduce and exploit in section E of this

chapter.

This thesis uses the laser radar systems in existence at MIT Lincoln

Laboratory as examples of real systems when desiring to make theoretical

models simpler or more realistic, or to use specific numerical values for

design parameters. The Lincoln Laboratory systems use CO2 lasers

operating at a wavelength of 10.6 um. These systems operate at

relatively short ranges (on the order of a few kilometers) with modest

aperture sizes (on the order of 10 to 20 centimeters) [8], [9]. The
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aperture size, laser power level (up to a few watts [8], [9]), and

detector sensitivity combine to limit the radar's range under any given

set of atmospheric conditions. The aperture size is not larger because

these systems are designed to investigate the design of primarily compact

systems for air-to-ground applications. These systems also use heterodyne

detection rather than direct detection. The advantages of a heterodyne

system are that it increases the sensitivity of the detector because of

the well known detection gain of a heterodyne system [10] and, since the

local oscillator is coherent with the received optical signal, it

preserves the relative phase variations of the received signal so the

receiver can measure Doppler shifts in the optical carrier [10]. Since a

direct detection receiver is not sensitive to the phase of the optical

carrier, it cannot measure Doppler shifts. The disadvantage of a

heterodyne system is the greater prominence of the speckle effect. In a

direct detection system, it is possible to reduce the degree of speckle

induced intensity variations by using a larger diameter detector to

average over several speckle lobes. In a heterodyne system, the

diffraction limited field-of-view makes it impossible to reduce speckle so

easily [11].

To analyze this configuration, we will first model the target, then use

Fourier optics to propagate the laser pulse to and from the target, and

use tools from statistical communication theory to determine the

statistics of the signal just before IF processing for a single pixel.

Then we will discuss the pre-processors often used in laser radar systems

and their advantages and, finally, present a model for the entire

multipixel target and its surroundings.

-.
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B. Target Models

Real targets are themselves very complicated objects. However, this

thesis' purpose is not to investigate the subtle differences between two

trucks from the same assembly line, or two different trucks, or even a

truck and a building. Accurate statistical modeling of real targets is

the subject of other, ongoing research [12]. In this thesis, all targets

will follow the purely diffuse speckle target model [3]. This model is

very accurate for certain prepared test targets [13], [14] and quite

accurate for at least the gross features of real targets. In the most

general form of this model, the target has a complex reflection

coefficient T( 1, z, t ) at every point in space and time ( , z, t ),

where is the transverse position vector ( x, y ) and T( * ) is a four

dimensional (space and time) complex Gaussian random process with

independent, identically distributed real and imaginary parts [3]. Since

T,( * ) is Gaussian, a second moment description completely characterizes

its statistics. The moments are:

E[ T( , z, t ) ] = 0,

E[ T( , z, t )T( ', z', t' ) 0 = , ( 2.1 )

El[ F z, t ) ( ,z', t')]=

X 2 T( , z, t - t' ) 5( - U' ) S( z - z' ).

The spatial impulse functions indicate the random structure of the

target's surface decorrelates much faster than a distance of one

wavelength X at the laser frequency, vo = c / X .The spatial

dependences in T s( * ) indicate the target need not be uniform. The time

dependence indicates the target may be moving, but this model assumes the

motion is a stationary random process, hence the dependence on only the
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time difference t - t'. This will be the model (often simplified) for all

targets, background, clutter, or anything entering the radar's field of

view (fov), including the no target case where T S( , z, t ) 0.

C. IF Signal Derivation

In terms of the complex envelope of the optical signals at the optical

frequency, v0 , the IF signal out of the detector is proportional to the

product of the complex field envelope of the reflected pulse and the local

oscillator (LO) integrated over the detector surface. To get the

reflected pulse's complex envelope, one must propagate the transmitted

field to the target, multiply by the target reflection coefficient T( * )

and propagate back to the receiver. In this thesis we will model

atmospherAc optical propagation as free-space diffraction modified only by

extinction loss, which is a reasonable approach for compact CO2 laser

radars [24]. We shall assume the LO field pattern is matched to the

transmitted field pattern, as is usually the case in such radars [14]. In

practice, it is easier to use the antenna theorem [15] and back propagate

the LO field to the target and perform the integration over the target

surface rather than the detector surface. Define _L( O, z, t ) as the

normalized transmitted beam pattern at target range z. Here the time

dependence t is due only to the beam scanning motion. We define another

term, s( t ), to contain the time dependence from the transmitter

modulation. Now we can express the transmitted beam and back propagated

LO beam at the target in terms of _( * ) and s( t ). Further define A
p

and AT as the optics aperture and target surface, respectively, and PT as

the transmitted power. Then the complex envelope of the IF signal at

intermediate frequency wIF (radians/second) is .( t ) [14]:
J

*1
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"r.J( t ) P dz s( t - 2z/c ) . do P , z, t -2z/c)

)FT foAT

" , z, t - zlc ) _( p , z, t ) + n( t ), ( 2.2 )

where n( t ), which represents the LO induced shot noise, is a stationary,

zero-mean, circulo-complex Gaussian random process independent of T( * )

V with covariance function E[ n( t ) n*( t' ) ] = ( h v / ) 5( t - t' )

[10]. Here h v is the optical photon energy and n is the detector

quantum efficiency. The first term in equation 2.2 is basically a delay-

integral/heterodyne-overlap integral specification of the target-return

component of j( t ). The delay integral over z encompasses targets at all

ranges while the overlap integral over AT is the heterodyne integral for a

particular range z. The equation includes all appropriate lag times. For

the IF target return at time t from range z, the transmitted waveform wass t - 2/c ).aTegfirs

-( t - 2z/c ). The first _( * ) term is the transmitted beam shape that

contributes to the target return at t from range z. The second *_( * )

term is the LO beam shape relevant to the target-return at t from range z;

it has no time lag. The target term T( * ) has a lag of only z/c seconds,

the one-way time of flight from the target to the radar.

Now let us make the assumption -L( P , z, t-2z/c ) j _ , z, t ) for

all z such that 1_l_( * )I makes an appreciable contribution to the

integral. This is the assumption of negligible radar lag angle. It will

make more physical sense after defining the transmitted field pattern in

terms of a radar scanning motion in the next paragraph. For now, the IF

waveform is:

,%

p iN
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J( t ) = dz ( t - 2zlc ) d T( , z, t - zlc)

_PAT

,_( , z, t - z/c ) + n( t ). ( 2.3 )

Although the transmitted beam pattern has been arbitrary so far, it is

usually a collimated Gaussian beam with some pointing angle T( t ) with

respect to a reference direction (see figure 2.4). Thus, let us take

F( T , t ), defined to be the normalized transmitted beam pattern at the

radar, as follows:

F( t 8 1/2 4 + jkt) ] ( 2.4)
Tr dd

where k - 27 / ) = wavenumber
~-2

and d = e beam intensity diameter at exit pupil.

Generally, ( t ) is a linear scanning function, -5( t ) -( tn ) +

- •*( t-tn ), for tn < t < tn + TA , where tn and ( tn ) are the starting

time and direction, respectively, for the n-th scan line, is the scan

rate, and T is the time required to scan one line. This gives a raster
A

scan arrangement like that in figure 2.2. (Note that because of flyback

time, tn+ I > tn + TA generally prevails).

D. IF Pre-processing

Thus far we have made as few assumptions as possible in order to make the

V equation for i( t ) as general as possible. These derivations give the

statistics of the IF waveform directly out of the detector, but real

processing systems (i.e., detection, identification, etc.) generally don't

S.
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deal with this IF waveform directly. Instead, some form of pre-processing

usually exists between the IF and the signal processing [12], [13]. One

reason for this intermediate step is the bandwidth disparity between the IF

waveform and the bandwidth of recording and processing electronics.

Typical research systems record the radar return data on tape for

subsequent off line analysis and testing [12], [13]. It is difficult to

record the data coming directly off of the detector because the IF

frequency is in the tens of MHz and has a bandwidth of several MHz.

Reducing this bandwidth is a prime reason why these systems employ pre-

processing hardware prior to data recording. Reducing the quantity (and

hence the bandwidth) of the data also makes it easier to process the data

in real time, an important consideration for practical systems.

Scanning systems, such as the one we have specified, usually break the

target into pixels and build an image of the target area from the pixels.

The pre-processing electronics act on each individual pixel time element.

For a ranging radar, the usual pre-processor examines the pixel time

interval and selects the peak of the random waveform and records its

intensity and time location relative to the start of the interval

"* (corresponding to the target's range). For a Doppler radar system, the

usual pre-processor Fourier transforms the received random waveform and

then selects the peak in the frequency space and records its intensity and

location (target velocity). These peak detection pre-processors reduce the

entire random waveform over a time interval to two real random variables.

Figure 2.3 is a schematic diagram of both pre-processors.

If the pixel dwell times are short compared to the time orders on which the

VP
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target changes, there is little loss in optimality from dividing the

waveform into pixels, but the peak detection may seem a bit ad-hoc.

Actually, there is theoretical support for this type of pre-processing. In

the case of a ranging radar and a non-range spread target observed on a

single pixel, it is easy to show (4] that the maximnum likelihood (ML)

estimate of the target range corresponds to the peak of the matched filter

output of the detector. So the pre-processor is essentially the ML range

estimator, but remains fixed for all types of problems.

One could argue the virtues of working out performance measures on truly

optimal receivers, given one goal is to examine the limits on the

performance of laser radars. However, real radars are likely to continue

to use some of the mentioned types of pre-processing for the reasons

mentioned. Taking this pre-processing into account will give performance

measures which are more realistic and closer to those researchers are

likely to achieve. This thesis will use the matched filter, peak detector

pre-processor model throughout. The signal analysis for the pre-processor

will simply pick up where the analysis for y( t ) left off. None of the

previous work goes to waste. Detailed single pixel peak detector analyses

exist [23]. The analyses in this reference include thresholding in the pre-

processor and the effect of the resulting dropouts. (When the intensity

for a particular pixel is below the threshold, no data is recorded for that

L'. pixel and we say a dropout has occurred.) This thesis will not use

77% thresholding in the pre-processor.

E. Frames and Subframes

r The pixel is our basic unit of spatial measurement and we will shortly

[•Xo% . -- - -_*5..
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derive the statistics for measurements taken on a single pixel. However,

laser radars have resolutions such that interesting targets often take up

more than a single pixel. We would like our receivers to use this

spatially distributed information in an optimal or nearly optimal fashion

to improve their performance. Since we have arranged our scanning geometry

(see figure 2.2) so pixels are essentially non-overlapping, the pixel

measurements will be independent thanks to the statistics of the target

reflection coefficient T( * ). Now we need a method to introduce the

spatial relationships between the pixels into the statistical models.

We will adopt the down-looking geometry of figure 2.4 for our analysis of a

single target at an unknown range and angular location within the radar's

field of regard (total field of view). For this geometry, the radar always

illuminates something. It may be the desired target (the vertical object

in figure 2.4), or it may be the horizontal background. In either case,

since the radar illuminates something, there is a target, or reflector

element, return for each pixel. We will sometimes use the term target

loosely to refe. to either target or background reflector elements. We

will discuss figure 2.4 in more detail shortly.

We will assume we know the target shape and angular extent so we can tile

the angular observation plane with M target shapes, each containing N

- pixels as in figure 2.5. We will call one observation of the entire

observation plane (MN pixels) a frame and call each target shape a subframe

(N pixels). The radar may stare in a particular direction long enough to

take more than one frame of data (MN pixels), but we will consider only one

frame at a time -- we won't try to use information from one frame to the

NN..

p.
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next. We shall assume henceforth the target exactly aligns with one of the

subframes. This assumption will allow us to search the frame for the

target one subframe at a time with each subframe independent of all

others. Without this assumption, searching the frame for the target would

involve searching approximately MN subframes, each with many pixels in

common with several other adjacent subframes. That is, we would be sliding

the target shape as a window around the entire frame like the dotted target

outline in figure 2.5. Thus, the subframes would not be statistically

independent and this would considerably complicate the ultimate task of

computing receiver performance. This may seem a rather weak justification,

but we must consider our stated objective is to find useful performance

* measures even at the expense of optimality if necessary. This is our model

of the target's angular characteristics. Now consider the target's range

characteristics.

We will begin our range model by assuming both the target and the

background are range unresolved. A range unresolved object is one where,

for each pixel, the radar beam illuminates only the target or the

background for each pixel (we ignore effects at the edges of the targets)

and the target or background has a sharply defined range relative to the

radar's range resolution. The iso-range lines on figure 2.4 are separated

by a distance equal to the radar's range resolution. True to the

assumption, the target's depth is much less than the radar's range

resolution distance. Under this model, the z-dependence of T( z, t )

is simply a Dirac delta function at the target or background range L:

T-( T , z, t ) =.I( 7, L, t ) 6( z - L ). Of course, this will make the z

integral in equation 2.3 trivial, but we will wait until the next chapter

.%% .. . ..
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to actually perform this integration. Another type of interesting target

we won't consider in this thesis is the range spread target. Range spread

targets are those whose geometry is such as to generate returns from a

spread of distances in a single pixel. For example, a flat plate viewed at

close to grazing incidence would produce a range spread return, as do

aerosols and the edges of hard targets. The range unresolved assumption is

reasonable for the 2-D pulsed imager compact CO2 systems we are considering

in this thesis [8], [9].

Examining figure 2.4 again, notice the down looking geometry will make the

background appear to slope away from the radar at a known angle (the

'radar's pointing angle). If we know the radar's altitude, we can compute

the range to the background accurately for a smooth background. So, we

will assume we know the range to the background for each pixel in the

frame. We will let any target in the frame be at an unknown range, but

require it to be vertical. Most targets of interest easily meet this

requirement. For a reasonably smooth background, each horizontal line of

pixels in a subframe will be at the same range and adjacent lines will be

at different ranges. The target, however, will have all its pixels in theS..'

subframe at the same range. Notice if the target sits on the ground, as in

S . figure 2.4, its range is the same as the range for the nearest background

pixel in the subframe. But since we know the range to every background

pixel, we would know the target range, too. However, the target need not

actually sit on the ground; it may be above the ground as well. As a

result we must assume we don't know the target range. However, since the

target can't be behind the ground, we know the background range is always

more distant than the target.
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This completes our model of the target's range and angular

characteristics. We have introduced a model which is complex enough to be

fairly realistic while being simple enough for analysis. We have made the

A' model complex by allowing the target's angular position and range be

unknown, by forcing the contiguous nature of the target into the subframe

model, and introducing a background much like the target. Both target and

background have unknown reflectivities. The model is simple by virtue of

the relatively small number of free parameters in the model. These

parameters are the target range and reflectivity, Lt and p t. the

background reflectivity, P b' and the single subframe containing the

target, mo. The target size and shape are known and both background and

target have uniform average reflectivity. Finally, all the pixels are

independent as a result of the speckle statistics.

4 In the next chapter we will derive probability density functions for the

pre-processor outputs, which are our measurement statistics, starting from

the y( t ) derivations in this chapter. In chapter four we will

incorporate the target frame models above and the chapter three results

into near optimal receiver processor equations.

a.
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III. RANGE-INTENSITY DENSITY FUNCTION

In the previous sections we were able to describe the statistics of the

complex envelope of the detector's output exactly. It had a Gaussian

density function with moments we could compute. This is a complete

statistical description of the signal. The pre-processor is not linear,

however, so its outputs are not Gaussian. Nevertheless, the joint range-

intensity (or Doppler-intensity) probability density function (pdf) of the

output random variables is a complete statistical description of those

random variablse. This chapter derives this joint density. We will

perform the development in detail for a ranging radar; results for the

,. Doppler and range-Doppler cases are handled via duality.

A. Signal Model

Figure 3.1 is a complex envelope model of the ranging radar receiver

through the pre-processor. The last chapter derived an equation for

Y( t ). For a ranging radar, the radar waveform s( t ) will be periodic

with period T, the pixel dwell time:

+ 00,

s( t ) = b( t - nT ), ( 3.1)

n = -

A where b( t ) is some elementary waveform, non-zero only in the interval

[ -T/2, +T/2 ]. The filter h( t ) is matched to the transmitter waveform
t ):t

h( t ) =b ( T - t ). (3.2)

% .-
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The next block is a square-law envelope detector. In many real systems

this block would be a linear envelope detector because the linear detector

has a smaller dynamic range at its output. The squared magnitude of a

complex Gaussian random variable gives exponential statistics, whereas the

linear magnitude gives Rayleigh statistics [16]. The two are related by a

*i simple transformation, but the exponential statistics are easier to work

with. The peak occurs at the same point in either case.

Substituting equation 3.1 for s( t ) into equation 2.3 for y( t ) gives:

.L( t ) T dz fd ( _P, Z, t - zlc)

n 0 AT

• * T( , z, t - z/c ) b( t - nT - 2z/c ) + n( t ) . ( 3.3 )

The matched filter output is:

Sa(t )=( t )*h(t)

-x( t ) *h( t ) + n( t ) *h ( t )

a x( t) + anoise( t), ( 3.4)

where

( t - T/2 2(
t ) t P Jdz J dT dT ( ,z, T -z/c)

LST0 A t-3T_
n T 3T/2

-- *
_ T , z, T z/c ) b( r- nT - 2z/c ) b ( T - t + T ) . ( 3.5 )

If the duration of b( t ) is quite short compared to T, T( * ) and _ ( * )

will be approximately constant over the period of time b( t ) is

significant, even if they are not constant over the entire pixel dwell

time. This short-duration pulse condition is the usual route to obtaining
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good radar range resolution, although some microwave and optical radars

* use long duration high time-bandwidth product waveforms which undergo

compression later in the receiver's IF system. This thesis will use the

short pulse assumption, under which we can take the T( * ) and _( * )

terms out of the time integral, so that a t ) is approximately:
-x

r 2-Ax( t V-- -- do " z, nT + z/c)

(3.6)
t - TI2 *

T( T, z, nT + z/c ) f d-T b( T - nT - 2z/c ) b ( T - t + T ).
t - 3T/2

Meanwhile, the noise component is:

Sanoise( t) n( t )* h( t) ( 3.7)

frt- / dt n( ) )b ( r- t + T ) . ( 3.8)
t 3T/2

n-.

Since .( t ) is a zero-mean circulo-complex Gaussian random process and

h( t ) is a linear filter, a( t ) is also a zero-mean circulo-complex

Gaussian random process. Therefore, its magnitude squared process will

have an exponential density function.

We will assume, as we did in proposing the model in the last chapter, that

each pixel contains only one, range-unresolved reflector element (target

or background). Again, for a range unresolved target, T( T ,z, t ) =

b ' T( , L , t ) 6( z - L ) with the target at range L for the n-thn n n

pixel. Now the filtered signal return is:

,' .

i,,.D-.-.................................



,4ax( ) d ,L., nT +Ln/C )T 5 Ln  nT + Ln/

-x nAn

t - T/2

fdt t T b( T - nT - 2L nc ) b*( t - t + T )
t 3T/2 -- n -

V T -n Rbb( t-(n+l)T -2L/C) , ( 3.8)

n

' where u is a zero-mean circulo-complex Gaussian random variable arisingT--1

from the p-integral and Rbbb( x ) is the autocorrelation function of

b( t ), arising from the T-integral. Define for future use, r n = (n+l)T

+ 2Ln/C.

Finally, we divide a( t ) by the square root of the n( t ) white noise

spectral density, h / ° n to get a normalized signal:

a(t ) Ya t ) / - h v 0n

% T / h 7 o Un Rbb ( t - -Cn )+ v__( t)

n

-~ bb( t n + v( t )(39
n

Here v( t ) is the normalized noise process and u ' is the normalized
--n

target return. It is easy to show these have moments:

E[ u' ] =0 E[ u' u'
E n -n -n nn

E[ v( t ) ] = 0 E[ Iv( t )12 ] - 1 ( 3.10 )

E[ u'u', 0 E[ v( t 2 0.

.,9.
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O" Now all the physics of the transmitter power, LO induced shot noise, the

beam patterns, the target reflectivity, and I/L2 range losses are in the

single, measurable parameter CNR, the carrier-to-noise ratio. Physically,

CNR is the ratio of the average reflector element return power to the

average LO shot noise power in the IF bandwidth. It is a quantity that is

well known in microwave and optical radar theory. For the monostatic

radar, resolved speckle target case of interest, CNR obeys the radar

equation [17]:

.4'. A

CNR= PT p e (3.11)'h Q T 7L -opt'
ou

where B is the bandwidth of the IF filter, A is the atmospheric

extinction coefficient, £ is the radar optical efficiency, and is
opt

the target reflectivity. The statement E[ u U s i = i
-- n nn' also implies

all pixels are independent. This is true because, as stated earlier, the

scanning assures minimal overlap of the beam between two pixels and the

target surface has a very short correlation distance. Also, since the

4.. signal and detector noise are from different physical phenomena, they are

independent: E[ u n' v( t ) ] E[ a '( t ) v( t ) 0 0. Because the

pixels are independent, it is possible to examine them individually. From

now on, the discussion will center on the density functions for a single

pixel, so we will arbitrarily chosse the n = -1 pixel and drop the pixel

subscript, n:

a'( t ) CNRu' Rbb( t- r ) + v( t ) , ( 3.12 )

T T < T

Ch-: % -:V

.-
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This equation also assumes for any specific time t, Rbb( t -t )

R bb( t -rn ). This is a consequence of the short duration of the radar

waveform b( t ) compared to the dwell time T and the assumption of a range

unresolved target. Put together, these assumptions assure there is only

one return per dwell time and this return's time duration il much less

than the dwell time. Now take the single pixel return through the

squarer:

w( t ) a,( t ), 2

C NR 111 2 1R bb(t2 + 1.(t 2 +

2Re{ CNR u' Rbb(t-r )v(t). ( 3.13)

The intensity process w( t ) is a non-negative, non-stationary random

process whose probability density function for any single time t is

exponential.

B. Range-Intensity Density Function

The final step in our ranging radar pre-processor is to peak detect

w( t ), generating the two random variables I and L, the intensity and

range, the ^ meaning an estimated or measured quantity. We desire an
exrsinfrA.A(XT

expression for nII,( x, y ), the joint pdf of these random variables. To

derive an expression for this pdf, we will examine w( t ) more carefully

and construct a model for the waveform.

Suppose we wish to locate a target return time within the dwell time of T

seconds. Then we define the range uncertainty interval as L = cT/2. Ifu

the pixel dwell time T is greater than the time corresponding to the range

%................
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uncertainty, 2Lu/c, ue will of course attempt to locate the target within

the smaller time interval. At the risk of confusion, we will use the same

notation, Lu and T, in either case. Figure 3.2 pictures the situation for

T the full pixel dwell time for the n = -1 case we introduced in equation

3.12. In the absence of noise, v( t ) = 0, w( t ) has a peak value of CNR"

Iu' 2 at t = T = T , where - = 2L/c is the time delay associated with

the range measurement L, as sketched in figure 3.2(a) for an arbitrary

b( t ). If v( t ) A 0 but the CNR is very large, we might expect w( t )

to display only minor corruption from the noise, as in figure 3.2(b), so

that T would prevail. However, since u' is a random variable and

v( t ) is a random process, there may be intervals where, even at high

CNRs, the realization of 1u'I 2 is very small while v( t ) takes on a

larger value somewhere in the interval. In this case, the peak in the

interval occurs at some T far removed from T , the location of the noise

free peak. Figure 3.2(c) depicts this situation. The situation pictured

in 3.2(c) is called an anomaly, designated by the event { 1 }. The

situation in figure 3.2(b) is called no anomaly, designated by the event

{ 0 }. The statistics of I and L conditioned on A 0 and a 1 will be

very different. The two e'ents are mutually exclusive and collectively

exhaustive, so Pr( 1 ) + Pr( a = I.

The existence of anomalies is not unique to this problem; it is a feature

"o If nonlinear estimation problems in general (4]. Another, related,

feature of nonlinear estimation problems is the existence of a threshold

.ifect. In classical nonlinear parameter estimation, the estimator's

performance degrades gracefully as the CNR falls until it reaches some

critical point, the threshold. Beyond the threshold, performance degrades

* . . ..-. V* o - -".°. ** * ?
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more quickly as CNR falls [4]. This is a very general result in nonlinear

estimation theory. For single pixel measurements of speckle targets,

however, the threshold is not apparent [23]. For this case, the anomalies

always occur and we are effectively always below threshold. For the case

of multipixel speckle targets, however, there is a threshold effect [23],

so we have taken some time to discuss the phenomenon here.

Both the signal portion of w( t ) and the noise portion, v( t ), have

widths or decorrelation times (see equation (3.7) ) on the order of tr,

*. the width of the pulse b( t ). So, w( t ) is approximately constant over

time intervals less than tr and points separated by greater than tr are

approximately statistically independent. Consequently, we will divide the

interval T into an integer number of subintervals, Q, each of length

T/Q = tr and model w( t ) as a sequence of Q independent exponentially

distributed random variables as shown in figure 3.2(d) [12). The random

variables all have mean I when the reflector element is not in the bin and

mean CNR + 1 when the reflector element is in the bin. Let's reiterate

the Q bins need not cover the entire pixel dwell time of T seconds.

Instead, the bins may cover only a subinterval of T in which the user is

interested.

At this point we can overlay the range and subframe models from the last

chapter onto the bin model. From figures 2.4 and 2.5 we can see the

background bins must be the last (farthest range) bins and the target must

fall in one of the remaining (nearest range) bins. We will divide the Q

range bins into QT potential target range bins and QB background range

bins as in figure 3.2(e). For a target, in the absence of noise,

Iv .
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1 < Q < Q T" For the background, in the absence of noise, QT+I < Q< Q,

and Q = QT + QB"

The usual approach would be to estimate the range variable T by first

performing a global maximization by choosing the bin containing the peak

and then performing a local maximization within that bin. The maximum

value would be the intensity estimate for that pixel, I, and its location

will be the range estimate for that pixel, T (or L = cT /2). In general,

it is this global/local approach [4] which produces the threshold effect

mentioned above. As the CNR drops, the global estimator will make errors

(anomalies) more frequently causing the local estimator's performance to

degrade drastically. However, we have already noted that for the speckle

* target statistics, the anomalies dominate the error probabilities at all

CNRs, so we need not worry about the threshold effect on a single pixel.

In addition, we are going to concern ourselves only with global or coarse

range estimates -- estimates of only the bin containing the target with no

local maximization within a bin. It is possible to do the fine range

maximization and derive the densities for the measurements [18], but they

are more difficult to work with. Although the fine range results indicate

Si processor performance more accurately, they provide no additional insight

into the processor. Both processors exhibit the same qualitative

dependences on the range and angular resolution parameters [18]. From

here on, we will refer to the range measurement random variable by its binm *

number Q = 2L/ctr .

We will use conditioning to compute the pdf ( x, q ):
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RA .( x, q )
IQ

A

xlAA ( Ix q, 0 ) Pr( Q q a 0 ) Pr( a 0 ) +
IIQ,ct 0

p2. A ( x I q, c 1 ) Pr( Q - q 1 1 Pr( 1 1 ( 3.14 )

The joint density function is also a mixed density function. The random

variable I is continuous, while the random variable Q is discrete.

.S Consequently, the probability function for Q is a probability mass

function rather than a density function.

The first step in deriving the joint pdf is to compute the probability of

no anomaly, Pr( a 0 ) = I - Pr( a, ). Call the Q exponentially

distributed random variables in our model Zq for q = I to Q. Assume, with

- no loss in generality, the target is in bin number I. Then event a

occurs if Zq < Z1 for all q * 1. Use the bin independence and directly

integrate over the exponential densities of Z1 and Zq to obtain

Pr( Oc) -- Pr( Z2 <Z ,..., ZQ<Z I )

=E[ Pr( Z2 < ZI  ZI )Q-1 (3.15)

"EZ[ (1- exp( -Z ) )Q-1

1 Q + CNR + I

=a

,., F( Q + N

I,+

U
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where the parameter a is 1I ( CNR + 1 ). This parameter recurs

frequently in the I densities, so this shorthand is convenient. The

reflector element CNR can be for the target or background. We will

designate these CNRs as CNRt and CNRb, respectively, when we wish to make

a distinction and write their corresponding a parameters at and ab. For

large CNR [4]:

Pr( OL0 ) i-a( log( Q ) - I / 2Q + 0.577) . (3.16)

Finding the density xIa (xl q, cc, ) requires using Bayes law andQ

conditional random variables. With the bin model we have introduced, the

conditioning on the range measurement Q corresponds to saying the peak
intensity occurs in a particular bin, say the q-th bin, q.

Conditioning on a1 further requires Q = q * Qi' where Qi' i = t, b, is

the true target or background range bin, respectively. Call the random

'.. variable for the intensity in each bin, q, Zq, as before. The desired

density is the joint conditional density for all Q intensity values after

integrating out all but the one where Q =:

2^A (x I q, c)1 dx1 .. dxqlf dxql ... J dx
IIQ'a 1  0

TA A ( X1"'"XQ I q, a1 ) " (3.17)

Zl,..z Q IQa 1

But:

A ( XI,...,xQ Iq, a 1 ) = ( 3.18 )Z1l'"" ZQIQ'C 1

A A

Pr( c IZlixl,...,ZQ=XQQ-q) Pr( QqIZl=Xl,...,zQ=xQ)

.
N

%p ~
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• PZ o,...,9ZQ (Xl,...,OXQ ) )

Pr( Q=q 1 01 ) Pr( 1 i)

The first and second terms in the numerator are both indicator functions:

they are either I or 0 depending on the values of their conditioning

variables. Together they force all Q-1 integrals to have upper limits of

Xq* Since all the Z's are independent, the last term in the numerator is:

Q
,ZQ( ... O = 2 ( x ) z ( X ( 3.19)
Q l , ) pQ i  q IPZ' '"q=1 q

q Qi CNR + 1 for j ;Qi

where x ) = 1 exp( - _ ) u( x ) Z T N 1 for i i
jZ. Z. 1 I for j #Q.

The first term in the denominator is just 1/ ( Q -1 ) since an anomaly

is equally likely in any of the bins Q * Qi" The integration is easy

because of the indicator functions, yielding:

" Q- 1 -x -ax e-x Q-2" P "I2 A x q, O l )  = r t e ( I - e ) ( 1 - e

IPr~ 1c 1

u( x ) 1 - qQi (3.20)

The calculation for , x q, a 0 ) is only slightly different:

Ak I x Q, 0 )
xA I q, 3.21)

IIQ~a0

O , . 00 f 00 0 0

f f dq 1 J dq 1  dQ Q
0 4
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A

Pr( a 0 1 Q=q,Z1=Xl,...,ZQ=XQ ) . A( Xl,...,xQ I q )
zi,...,ZQIQ

Pr( a 0 )

Again, Pr( a 0 1 Q=q, Z1=X1 9... ZQ=XQ ) is an indicator function which

forces the upper limits on the integrals to Xq. The result is:

1 -ax e- Q-1

A (A x I q, a 0 = P a e ( 1 - u( x)
IIQ,a 0 rC 07q

(3.22)

Turning to the probability mass functions for the range, under event a 1

any range outside the correct bin is equally likely, so:

Pr( Q q I a 1 ) = ( 1 - qQ) ( 3.23)

where Q. is again the noise free (true) target range bin.

The probability mass function Pr( Q = q I a 0 ) is by far the most

trivial. It is simply an indicator function:

Pr( Q-q ) qQi ( 3.24 )

Putting all the pieces together, the joint density is:
-ax -~x )Q-1

y. .( x, q)= a e ( - u(Qx1 ) 5 qQ +
I ,Q 1

( 3.25 )

-x -ax - Q-2
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The marginal densities are

-ax -x Q-1pA( x) =a e (1i- e ) u( x) +

I

x Q-

e-X (1-e-ax )( -e-x u(x) ( 3.26)

d -ax -x )Q-1= i- [ ( 1 -e ) e]u( x) ,

A Pr( a, 1 )
Pr( Q = q ) = Pr( ct0 ) qQ + ( I - 5  ) ( 3.27 )

i Q - 1 qQi

C. Range-Doppler Duality

The previous derivations centered on intensity and range measurements.

:d This section will demonstrate a duality between the range and Doppler

shift measurements that will make it unnecessary to always repeat range-

intensity analyses for Doppler-intensity radars.

The previous analysis, up to equation 3.3 for j( t ), does not change. We

will pick up the Doppler analysis from that point, but drop the n

summation index and let n = -1 so as to deal with only one pixel (as we

did in the range analysis). A well known result of Fourier transform

theory tells us that in order to obtain good frequency resolution we

require a long observation time. So, for a Doppler radar the duration of

b( t ) will generally be comparable to the pixel dwell time. Under this

condition, almost any target is range unresolved, so we can let:

T( , z, t - z/c ) = T( F, t - z/c ) 6( z - ( L + vzt ) ) ( 3.28 )
-a.

p0%
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where v is the target's longitudinal velocity (only the longitudinal

component contributes a Doppler shift). For simplicity, assume a

transverse velocity of zero. Performing the z integration in the single

pixel reflector element return integral then gives:

L+v t L+v t

~~ VP, f d Lc ,t-) 1
A P

2( L-v t)
t n(t). ( 3.29)

If we perform the integrations to propagate the beam to the target, we

find under the far field approximation:

"2jkz jk 17 2/z I""" ( ,z. t )= e j z e j k

Z2-7, 0(Z

I T - z ( t ) 12

* exp[ - 2 (3.30)
z )' 2 ( z

,' o'( z ) =2 X, z >

We will continue to use the assumptions the target changes little over a

pixel dwell time, and that there is negligible radar lag angle. We shall

also assume that the dwell time is short enough that only a relatively

small fractional change occurs in the area the radar illuminates. Under

these conditions we have that

22jkv t

E( z + v t, t ) _ ( z, t ) e z (3.31)S Z

and

""..V
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2v 2 L 2jkvztZ( )- A(t z - )) e
c c

dz, -)r( -, t-E) + n( t)
AP

"L 2jkv t

T  b(t )e + n(t) ( 3.32)T -c

where we used 2vz << c. Here b( * ) is the delayed pulse, u is the

speckle induced amplitude variations, and the exponential is the Doppler

shift.

Now let us impose a pre-processor as before except instead of matched

"Nthefiltering y( t ), perform a time-limited (windowed) Fourier transform. So

the output of this transform will be:

V:..' a( f ) = FTw ( t )
0

+0u 2 L j2kvzt -j2" ft

C _ W( t V t e e dt

+ v( f ) , ( 3.33 )

where u' is u scaled to a unit variance and W( t ) is the window function,

0.0 W( t ) = 0 for Itl > T/2. The noise v( f ) is a unit variance, zero mean,

complex Gaussian random process. Continuing:
M% 

-j2- ( f -fd )t

at( f ) = CN _u' [ W( f - fd ) * b( f - fd )  e

(3.34)
+v( f)

.a. iP
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Note that if we choose W( t ) so that W( f ) = b ( -f ), the convolution

becomes Rbb( f - fd ) and we have an exact analogy with the ranging radar

result in equationn 3.18, except for the phase term. However, we can

combine the phase term with u' without changing its statistics. So, we

have demonstrated an exact analogy between the ranging and Doppler radar

signals under the stated conditions. By using appropriate scaling

A': factors, we can use all the range radar results in Doppler radar

analyses. The Doppler Q measurement is Q = F / fr where the random

variable F is the measured Doppler shift and f is the frequency* r

resolution or Doppler bin width in Hz.

Although we have established a duality between the IF pre-processor output

signals in ranging radars and Doppler radar, we must still demonstrate a

duality between the target and background models for the two systems. We

will still assume the down-looking radar geometry of figure 2.3. If the

radar is moving parallel to the ground with velocity V, we can use simple

trigonometry to determine the projection of V onto the line of sight

direction to the ground in terms of the radar's pointing angles, 7( t ).

So, we can assume we know the longitudinal velocity of the background

relative to the radar for each pixel. If the radar is stationary, we have

-. the special case V = 0 and all the background pixel velocities are 0. As

long as the target moves with a constant longitudinal velocity with

2 - respect to the ground, its velocity will fall into a Doppler bin distinct

from the background bins. However, since the target may move toward or

away from the radar, it is not possible to place the QB background Doppler

bins at either end of the Q total bins in general. Typically, one would

arrange the frequency uncertainty interval, F , the dual of the range
.'- U

| . -
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uncertainty interval Lu, so it is centered around the background Doppler

bins unless we have a priori knowledge of the sign of the target's Doppler

shift.

D. Range-Range and Doppler Dulaity

In the previous section, we developed the duality between range radar and

Doppler radar by putting both post-filtering waveforms into the form:

a'(t)= C u' Rbb(t- " ) + v(t) ( 3.35 )

with appropriate joint statistics for u' and v( t ). However, for the

peak detecting pre-processor we will deal with, this is a bit more

stringent than we really require. Although certainly the statistics must

be the same, the function Rbb( t ) need not be an autocorrelation

function.

For a receiver measuring both range and Doppler, the maximum likelihood

processor is the ambiguity processor [19] which first extracts the time-

frequency correlation function

a( td f ) = f +Mdt ( t ) s 3t - t ) e ( 3.36 )
x o d-00d

prior to envelope detection and peak detection. If we choose a

transmitter waveform s( t ) such that the ambiguity function

I Y( tdo fd )2, where

,!+° 0 0 - j 2 -r f d t
t d* fd d t t t - d  e d 3.37 )

I

=1
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" . is the near ideal thumbtack, as Skolnik [20] calls it, shown in figure

3.3, then the pre-processor input is:

a'( t, f ) = C ' x ( t, f ) + 2( t, f ) ( 3.38 )

where v( t, f ) is a zero mean, unit variance, complex Gaussian random

process arising from the filtered local oscillator shot noise.

.

Now we divide the t-f plane into Q range-Doppler bins. The waveform

s( t ) sets the range and Doppler resolutions, through X ( t, f ), and so

the bin sizes. Simply mapping the 2-D array of Q bins onto the I-D array

of Q range bins makes the range-Doppler receiver based on equation 3.38

isomorphic to the range radar receiver based on the coarse range version

of equation 3.12. Notice in both this and the range only processor, by

using only coarse range, Doppler, or range and Doppler data, the exact

form of the Rbb( * ) or X ( * ) functions are not very important as long

as the noise free peak is unambiguous. If we had used fine range data as

well, the analogy would need to be more stringent to translate the

results. The exact shape of the correlation functions would need to be

the same.
4.

This establishes the duality in the IF signals, but we need to establish

the duality between the range-Doppler model and the range model as well.

', This is very easy now that we have established the duality in the Doppler

radar case. Taking a composite of the range and Doppler radar models we

have already developed, we can segment the range-Doppler bins into a set

of QB large range, low Doppler shift bins where the background returns

must fall and the remaining QT bins where a target could occur, as shown
T.

A .

. . * . . . . . . . . . . . . . . . . . -* .
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S.in figure 3.4.

With the joint and marginal densities in hand, we can proceed with

processor design in the next chapter. Using the dualities we just

derived, we only need do this design once for the range receivers.

N.

'.'

* b

,. .',

* V
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Q = QFQL

Range bin number:

1 2 ... QL

Doppler binnumber: 1

2

Target
Response Background

,e P.'- Bins

5'.z
7/ fr

-._ t~ ~ .tr

Figure 3.4

Range and Doppler Bin Model
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IV. BINARY DETECTION RECEIVERS

A. The Neyman-Pearson Criterion

This thesis focuses on binary detection receivers which use the Neyman-

Pearson criterion for detection (4]. The Neyman-Pearson approach is

useful for deciding between two events whose a-priori probabilities are

either unknown or, as in this case, not meaningful because they are not

random phenomena. The problem here is to choose between two possible

decisions: target present (H1 ) and target absent (Ho) based on an

observed data vector R. Here R may be any subset of the measured

quantities { Imn, Q : m < M, 1 < n < N ) where the index m represents

the subframe number and the index n represents the pixel number within a

subframe. The Neyman-Pearson criterion constrains the probability of

false alarm, PF = Pr( declare H1 1 H0 ), to be less than or equal to some

specified value PF' and then minimizes the probability of miss, PM =

Pr{ declare H0 1 H1 ), subject to the constraint. Performing this

constrained minimization results in a likelihood ratio test:

,2)IH r- H 0  <
'0H 0

with X chosen so P= P

If A( r ) is not a continuous random variable, PF will not be a

continuous function of X . In this case, if the desired value of P is

not one of the discrete values, we must randomize the decision rule to

obtain the desired performance [4]. The reference describes the procedure

,i
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for a simple example. We will need to use this procedure in chapter 6 to

analyze the performance of the range processor because the discrete range

measurements, ( Qmn ), give rise to a discrete likelihood ratio and PF

function.

B. Unknown Parameters

Equation 4.1 is not completely general, since the densities often depend

not only on the data R, but also on some other unknown, non-random

parameters. If it is impossible to express the likelihood ratio A( r )

independent of these parameters, we must first determine the maximum

likelihood estimates of the parameters under H0 and H, and then use these

estimated values in the densities as if they are the true values. This

procedure generates the generalized likelihood ratio test [4]:

max( .RJHI,A( r H1 , X ) H1

Ag() a A> ( 4.2 )
9 max( .RIHu ( r Ho,

H0

where A is the unknown parameter vector.

In this chapter we will specifically treat intensity and ranging radars

and later treat Doppler radars by duality arguments. For the intensity

and range radars we are analyzing, the unknown parameters are m0 , the

actual subframe which contains the target, Qtmn9 the actual target bin

number for the n-th pixel in the m-th subframe, CNRt and CNRb , the target

and background carrier-to-noise ratios, respectively, and sometimes

functions of these parameters (i.e., Pr( aOt), the probability of no

target anomaly, a function of CNRt).

-t " ", -¢ '7" ". ,"' . ' ' - - ' - ' - ' - t- . . ," '.o.-' -'. ',- ., " .'.'., '" .',, " "t '''e /N"
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Introducing the generalized likelihood ratio is a crucial step in this

development. The unknown parameters involve the multipixel nature of the

target. Introducing the generalized likelihood ratio in combination with

the models of chapter 2 is the procedure which makes it possible to derive

optimal or quasi-optimal processors for multipixel targets. Although the

generalized likelihood ratio concept is not new [41, applying the concept

to this problem is new and this is what allows us to derive these results

for multipixel processors.

C. Subframe and Frame Statistics

This section presents the general method we will use to derive the frame

statistics from the subframe statistics and treat the target true subframe

location, in0 , as an unknown parameter.

We will have some frame level measurement vector, -R f ), which is a

composite vector of M subframe measurement vectors, 1 (s), where the
m

superscripts (f) and (s) indicate frame and subframe level measurements,

respectively. The generalized likelihood ratio test with unknown

parameters m0 and A (for any remaining unknown parameters) is:5.o

Xfmax {Rnf~jH1,X~m r(f) I HI , A, m ) H 1

A ( f )  A MO > , 4.3

max (f, o( r(f)l Ho, X, m° ) }H

0 -f 0 H

Since the subframes do not overlap, the subframe measurements are

statistically independent and those subframes not containing the target

have the same statistics as if there is no target in the frame:

*. %
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Jr
max T(s) I Hi
A, mo0  mo'I~ X m

m = 2 JiV mlo'
0

'r-' (s) Ho

f)rm Lrm

A = M 0 4.4)

g max fo, (s)l Ho, A )

A, m R s) I m

Since the denominator in equation 4.4 is independent of m, we can drop

the m ° maximization in the denominator and take the denominator inside the

m 0 maximization in the numerator (being careful to keep the A0

maximizations separate):

" 
H (s) 

A
2R(S)IH 0,A M 0

mi m

SM = maxi 0 ( 45 )

max{ i i Rr~H0 A j:~s)j Hot!,~T m S)I-,R (s) HO'
"-'. '"M = m

Often the unknown parameter vector, A, contains elements which affect the

densities under H1 or Ho, but not both. Examples are CNRt which affects

the density under H1 but not Ho, and CNRb which affects the density under

H0 but not H1. Let's call such parameters "hypothesis separable"

parameters. Then the vector A becomes ( A0 , A1 ) where the subscripts

. '
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indicate which hypothesis the parameters affect. If the parameters are

hypothesis separable, we can rewrite the part of equation 4.5 inside the

m maximization as:

max }-(s) H

AT (r()J H m
I m°

• ma2 T() ((s) Hot Xo
0 AOi M = I m 0~'X

0. (4.6)
M

max mr s)l Ho ,j T -RJ~5'JHQX m 0
O m = 1 m

The difference between the A0 maximizations in the numerator and

denominator is one subframe term. If M is fairly large, both numerator

and denominator will give nearly the same estimates for the parameter

vector A " If we make the estimate in the denominator and use the

resulting vector A0 in the numerator, we will introduce only a small

error, but all M - 1 terms where m m will cancel in the numerator and

denominator leaving for equation 4.6:

V (-(s) Hit Xmax { Al s)Hl,Al rmo HA)
AI mYS Iol 1

o A (S) T p(s) A (s) 4.7
A (r-(S) g H m 0 gmo
(HR(S)Hoo  0 0

0

where A0 is the estimate of vector A0 derived from measuremnets over the

entire frame. Notice we have introduced a shorthand notation for the

subframe generalized likelihood ratio, A gm (S) Now we may write:
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A = max (A{ ) ( 4.8)
g m gm

Now it is clear the generalized likelihood ratio for the frame is simply

the maximum of the generalized likelihood ratios for the M subframes.

This fact makes it quite easy to find the frame level probabilities of

false alarm and miss, P (f) and PM f , from the subframe level

probabilities of false alarm and miss, PF (s) and PM(s) . The procedure is

as follows:

""~~ M (f) < IH 49
-. F = Pr[{ Ag( )>x IHo

= I-Pr < XA Ho  4.9
g

= I -Pr( max( A (S)

m

We will treat all M of the A (S) as approximately independent and, undergui

Ho, identically distributed. They are not exactly inndependent because,
although the measurements - (s) are independent, the A 0 value used in the
althougarehindependenttthe

denominator is derived from a maximization over measurements for the

entire frame. If the maximum is less than some specific value, all M must

be less than that value, so:

Pf) = 1 - Pr( Ag (S < H M
F gm 0

1 -r[ (S) > H0 }M 4.1.. = 1 -[ i1-Pr{ Agm  _ 0 ) ( 4.10 )
gui

: = ~I1 - P(S) ]M .

Here P F(s) has an intuitively meaningful definition. It is the
W"F

--4w ",-- • .",4". . . ."""J"e 
' "

")" ' "
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probability of false alarm if we consider just a single subframe. A

nearly identical analysis for , again assuming independent A gm(S)

gives:

M p(s) [ 1- P (f) -H-(

h 1 - P F4.11 
)

where

P(s) = Pr( A(S) < X I .M ngm

The physical interpretation of these equations is as follows. A miss
. (s)
occurs if none of the subframe statistics, A clears the thresholdgm

. A detection occurs if at least one of the A (S) statistics clearsgm

the threshold, even if the subframe whose statistic clears the threshold

does not actually contain the target. But the probability of a detection

on the wrong subframe turns out to be quite small; this event is

essentially a false alarm and its probability is bounded by PF Notice

this argument depends only on PF(S) being relatively small. It does not

depend on the CNRs or any other parameters. Further, from equation 4.10,

if M is large, PF(s) may be small even if PF
(f) is not.

Notice since adequate performance generally requires PF
(S ) to be fairly

small, we can usually make the approximations:

PM M , -'
F F
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and ( 4.12 )

In words, equation 4.12 says for a fixed target size, N, PFM rises

linearly with an increase in the angular search area and PM(f) is

approximately independent of the angular search area.

D. Multiple Targets

Suppose we wish to consider the possibility of multiple targets in the

frame. We will continue to assume targets align with subframe

boundaries. We will also assume the number of subframes containing

targets, M', is a small fraction of M. There are several possible ways to

analyze this problem and define the corresponding false alarm and

detection (or miss) events, each of which may make sense for a particular

problem. We will form the generalized likelihood ratio for each subframe,

V. perform a threshold test on each subframe, and declare target present or

target absent for each subframe independent of all other subframes. That

is, perform no maximization over the subframe generalized likelihood

aratios before the threshold test. A false alarm occurs any time we

declare a target in an empty subframe, even if there is a target elsewhere

in the frame. A miss occurs anytime we declare target absent in a

subframe containing a target even if we have correctly detected targets in

other subframes.

With this processor, the probability of miss for any target is just the

value PM(s ) already computed. Similarly, if we compute a frame level

probability of false alarm PF(f)' it is

~ ap ~p*~sp . *~* P~w~,,li ~ - as-~F
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"'iPM )  1 -[1 - Pr( A(s) > A H0 }M-M' .1

-1 gr -M ( 4.13 )

(Pf)

since M', the number of subframes containing targets, << M by assumption.

The point of all this discussion is whatever results we derive for the

sinrle target in a frame are also useful for discussing performance with

multiple targets in the frame. We need make only minor corrections to the

single target performance numbers to make quantitative statements about

multiple targets in a frame.

E. Measurement and Target Models

We will retain the pre-processor introduced in chapter 2 and continue

working with only coarse range or Doppler data as in chapter 3. In this

case, we already have the density functions we need from chapter 3. Now
'C

we will use these density functions in the generalized likelihood ratio

tests from above to derive the processors for receivers measuring range,

Doppler, intensity, or some combination of these signal dimensions. Since

we have already established a range-Doppler duality and a range and

Doppler analogy with range only measurements, the joint range-intensity

measurement receiver is our most general case. We will do this case and

then the range only and intensity only cases.

All these derivations use the target model introduced in chapter 2. In

that model the target is range unresolved at an unknown range. It is

vertical against a background sloping away at a known range. Neither

target nor background CNRs are known. Targets align with subframe
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boundaries and we wish to determine whether or not a target exists in a

frame.

We will label each pixel with a subscript for subframe index, m,

I < m < M, and a pixel index, n, I < n < N, as we did at the start of this

chapter. For each pixel in a subframe, we measure the intensity, Ibmn'

at the known background range, Qbmn* This gives rise to an exponential

density function for Ibmn* For each pixel we also measure the intensity

in all non-background range bins and choose the maximum of those

intensities. Call this maximum Itm n and call the bin it occurs in Qtm n ,

the presumed target range. This gives rise to the statistics we derived

in the last chapter for Itmn and Q tmn Of course, Ibm n is independent of

both Itmn and Qtmn' though Itmn and Qtmn are dependent random variables in

general. This is the most general form of the model.

F. Joint Range-Intensity Processor

If there is no target present for a particular pixel, the system CNR will

be CNRb and the effective CNRt is zero. There are Q range bins and, using

the notation introduced in chapter 3, one of of them is the background

range bin, so we do the maximization over only QT = Q - QB bins to find

Intmn and Qtmn for each pixel. We measure Ibm n at the known background

*".. range bin. The densities for the resulting measurements are:

2P H ( xbmn I HO )= ab ebxbmn u( bmn ),IbinniHo

( 4.14 )

2 A x q mn I H 0
ItmnQtmn IHo tmn

.74'
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-xtmn )QT-  tm ) < qmn < QT
( I- e e u tmn , _ _ T

The background and target random variables are conditionally independent,

so we simply multiply the two densities to find the joint density for the

measurement vector ( Ibmn, Itmn, Qtmn ) on each pixel under hypothesis HO.

If there is a target for a particular pixel, the system CNR is CNRt and

the effective CNRb is zero. The resulting densities are:

( xbm n I H1  =e u(bmn )xb ,
I bmn j HI

P ( xH ) = ( 4.15 )I, tmnQtmn IHI 1 tn

a _ a t xtm n  e-xtmn )QT- I  (xtn qm~- a u(x t ) Q m Q +

Stmn -tmn

1, ( e ) -e e U( x tmn  q mnQ t

< q <- QT

The background and target random variables are still conditionally

independent under hypothesis H1 .

Since all pixels are independent, the frame density is just the product of

the M subframe densities and each subframe density is the product of N

pixel densities from equation 4.14 and 4.15. Applying the general results

of part C above, the frame generalized likelihood ratio is

AM" = max( A s)
g gm

*1

" " ' '' e- , ' , t ,.,,' - -., ,l ' " ' " " ' [ ' . ... . . . ... .r. _, ^,. .
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where

N
(S) =max{ F 2A A (x , H1 , a,

gm at'Qt I I tmnqtnHl'at'Qt

( HI ) } ( 4.16 )
Ibmn I H I

N

I A ( tmn, qmn I H0 )
n= ItmnQtIHO

E^•19 Xbm n  H HO , a b )

IbmnIHO,ab

The estimate ab is from the maximization over an entire frame, i.e.,

- -. M N

max( 'Fl 1 (XbIHO, ab)b m = 1 n- = Ibmnob

occurs at ab = ab. This gives

A MN-aa b  M N---N ( 4.17)

m 1 n= 1

The true value of the parameter ab is the true mean of the sampled random

variable, .b* The estimate of the parameter ab is exactly what we would

expect from intuitive notions and the law of large numbers: it is the

- sample mean for measurements of Ibmn over the entire frame.

Now we substitute the densities in equations 4.14 and 4.15 into equation

4.16, cancel terms in common in the numerator and denominator, take the

logarithm Of (S) to change the products to summations and use the
gm

monotonicity of the logarithm to justify bringing the logarithms inside

: , ... . . . ... ... . ._ .1• . -A ..... . .
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the maximizations. The result is:

N

log A(s) = max( log A(P)( Xtmn' qmn Xb ) } ( 4.18 ),,gm m mg'n atQt n=1

where

Alog A (P)( X q X a A (P)
tmn am bt mn X

log I tmnQtmnIbmnHlatmQt Xtmna
.2A. . .. ( qmn' q m, m Ho t a b )

,I " tmnQtmn, I bmn Ho~a b  Xm' Xm

[ log( at ) + ( 1 - at ) x ] 6qmnQt + ( 4.19 )
-atXt -X tmn

[ log( I - e ttf) - log( 1- e ) (i- /q mnQt

A 
A

[ log( ab ) + ab ) xbm ]

The (p) superscript indicates a pixel level likelihood ratio.

Consider a very large CNRt (say, >60 dB ) and I tmn  CNRt, which then

occurs with high probability. The logarithm of .' mn is then

approximately:
A A

1 pn -[ log( ab ) + ( 1 - ab ) Xbmn ] +

( 4.20 )
[log( at ) + ( 1 - at ) Xt n ] qm t .

t t t m q n Q t

Since we are interested in receivers we can analyze rather than strictly

optimal receivers, we will use this approximation for all CNRts, even

small ones (CNRt >10 dB) where the large CNRt and Itmn assumptions are not

'.ie
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valid.

Now we perform the maximizations over Qt and at in equation 4.19 so the

subframe log likelihood ratio is:

log A (s) = max[ log A ( p
gm at'Qt n g mn

Vm.1 Jm Ai

= N [- ( log(atm )+w.-1 ) - (4.21)
atm

AA

log( ab ) + (1- ab T Tbm ]

where

N N

N m

F'" m Z-  6 - ' =NXm

N -1

Xtmn  A".. mQ t M N
n mn tmf A r11-1

-n b N =L b

n n

n = mn tm

Physically, jm is the number of times the peak detector selected bin Qtm

as the maximum bin in subframe m. We will coin the term "hits": jm is

the number of hits in bin Qtm Clearly, jm is an integer in the interval

[ 1, N ] with larger values more probable for high CNRt values.

Physically, atm is the inverse of the average intensity for the hits in

the presumed target bin Qtm* It is the same form as the estimate ab (for

a single subframe) except the uncertainty in target location has reduced

the number of intensities to average over from N to Jm" The quantity I
bm

W'I.

'* %% %
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is just the average background intensity for subframe m.

The only thing left undefined here is the procedure to determine Qtm"

. Mathematically, the procedure comes from the a and Q maximization terms

in equation 4.21. Physically, the mathematics tells us bin Qtm is the bin

which has the largest average intensity for measurements over the entire

frame. Figure 4.1 demonstrates the procedure for QT = 6 and N = 5. For

each pixel we record Qtmn and Itmn* For each bin we sum the intensities

of all the hits in that bin number over the entire subframe and divide by

the number of hits in that bin number to find the average intensity for

that bin. We compute this average for all QT potential target range bins

and select the maximum. The bin where this maximum occurs is Qtm' the

number of hits in that bin is jm' and the inverse of the average for that

bin is atm* If there is a target in the subframe and CNRt is significant

(> 10 dB), there is a high probability Qtm will be the bin with the most

number of hits, too. If CNRt is very small or there is no target in the

subframe, there may be, for instance, one bin with two hits and a smaller

average intensity than some other bin with only one hit.

Equation 4.21 has a physically intuitive form. It is essentially the

difference between the average intensity at the presumed target range and

-. . the average intensity at the known background range. Under HI, m

should be reasonably large ( >N/2 ) and the a dependent terms are

approximately NRt - log( CNRt ) which is > I with high probability.

Meanwhile, the background terms will be close to zero with high

probability. This gives a large log likelihood ratio. For hypothesis H0

I: the target terms will be small and the background terms large, so the log

A.: i. w • ." ".:. -' ' ' - ,- , -" "-. -...
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likelihood ratio will be small. If MN is large, we can treat ab as an
essentially exact estimate and thus make Ibm the only background dependent

term. This simplifies the expression some since we can add, subtract, and

multiply positive constants to a Neyman-Pearson test ratio without

changing the performance (the as yet undetermined threshold shifts,

however). An equivalent processor is:

lo (S)  Jm A I
l s) A g ( log( atm ) + i- ) - T . ( 4.22)
gm N( I -ab) atm

Here Ibm is a chi-squared random variable with 2N degrees of freedom since

it is the sum of N exponential random variables [16]. However, at is a

very complicated random variable and enters the expression in a very non-

linear fashion. Random variable jm is only slightly less difficult to

generate a probability mass function for. This makes it very difficult to

handle the performance even in approximate form. We could always

calculate the processors performance by simulation methods, but we won't

take this approach either. Instead, we will examine two simpler

processors which measure range or intensity only. We will find their

performances are easier to handle analytically or in approximate form. We

should keep in mind, however, this joint range and intensity processor

will out-perform the intensity only and the range only processors or any

ad hoc combination of the two processors.

G. Intensity Only Processor

In this section we will investigate a receiver which measures only the

intensity of the pre-processor output, Imn* We peak detect over all Q

bins, but throw away Qmn and we don't use the information about the range
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to background. We use only the measured peak intensity I mn. We will

begin the intensity only processor analysis by examining the processor for

a single pixel measurement:

- max( x H ( x t ) )
()() a t  l 'atat

g max[{* ( x H0 , ab ) )
ab -IHO,ab

1, 2 x jHi, a~ )
IJi~ t t

= max b (4.23)
at,ab , x Hot ab

If we make the large I L, large CNRt and CNRb assumptions, as we did for

-' dthe joint processor earlier, the conditional density for either hypothesis

reduces to:

-X -a.x, J [2( x I Hi , a )-(i- e ) e J  U( x )(4.24)

IfHi,a.

for i = 0, 1, and j = b for i = 0, and j t for i = 1. Then the log

likelihood ratio is:

log0 A ( x) max ( b -a t ) x 4.25 )
8a t , ab

Since the ab and at values form a single multiplicative constant, they are

irrelevant to a Neyman-Pearson processor if we know the sign of ab - a.

Then the generalized likelihood ratio is also a uniformly most powerful

(UMP) processor [4] and is simply:



-. 4

logA (P)( x 4.26 )
g

Using the general results from earlier we now find the frame level

processor for N pixel subframes is simply:

N

logA =max{ Z logA (P)
g m gmn

nl

N

f max( x ( 4.27)
m

n=1

Smax{ log A(s)

4. gm
--C ., m

where it is still critical that we know the sign of ab -a t. In general,

however, we don't know the sign of ab - at . Indeed, we may have either

CNRb > CNRt (called negative contrast), or CNRt > CNRb (called positive

contrast), or CNRb = CNRt (no contrast or zero contrast). Nevertheless,

in keeping with the idea of working with processors we can analyze, we

will continue to use log A gm(s) = s= Imn as our subframeSgm mE m
n

statistic, and derive a way to handle the unknown contrast ratio.

Since we will generally be concerned with N 10 or more pixels per

subframe, we have a sum of a "large" number of independent random
(s)va

variables. This gives us a conditional Gaussian density for R m  via

the Central Limit Theorem. The conditional moments for R (s) are:
m

E[ R( s )  11(s) N var = N .( 4.28 )
m Hs 1vr

.,

V
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for j = t, b, where pj and c2 are the conditional pixel mean and

variance, respectively, and Ht(s) denotes the target subframe, and Hb(s)

denotes a background subframe. After some straightforward but tedious

calculations we get the conditional moment values:

Pr( cto )1
= aCNR

-(CNR=0) = (Q + 1) - p( 1 ),
2 Pr( a 0 )

= 2 Pr ( Q+ a)- '(a)-A ] + (4.29)
a

r( ti ) 2 2

+Pa( CNR 0

a Q

a 2( CNR = 0 ) = - [ p'( Q + 1 ) - '( 1 ) ]

where ',,( x ) and ,'( x ) are the first and second logarithmic

derivatives of the gamma function, F( x ). The equations are valid for

target and background with appropriate subscripts on the variables i, u,

a, CNR, and aO .

.. Since the subframes are independent, the frame processor falls into the
'p. .

same general form we derived in parts B and C above:

( r(s) I H1  ) I
._ t m t

=max } . ( 4.30 )s) r m (rS) I Ho g "I b)

- We will do the maximization in the numerator by differentiating the

density with respect to pt directly and setting the derivative to zero:

P '.1' 
•: 

AP

4,.;

-4.-p.?
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d , (r(s) I H t ) I =0 (4.31)

CT Pt R(S)IH mtt
=  t

"(S)

The density for R (s) E is conditionally Gaussian with mean N pt

2 2 n 2
and variance N at . However, at  is a function of 4t via the equations

in 4.29. This dependence between pt and at complicates the formula for

With this functional dependence, the estimate is given implicitly

by the equation:
*1tm

AA

P a(4.32)

tm = tm - tm 12 a + (432

where the value of a tm is the value of the equation for at evaluated at

It = Itm and a'tm is the derivative of at with respect to lt

evaluated at tm. If at was not a function of t (or CNR t), the

a. variance dependent terms in equation 4.32 would not be present and the

estimate would be itm = 'tm M I the sample mean. At very high
n

CNRt values, at Pt' so the estimate reduces to:

A 2

= V.tm -- 0.618 tm " ( 4.33 )tm 1 +VTt

For small CNRt values, at' and at approach constant values and utm

approaches the sample mean minus a constant bias. In keeping with our aim

to use simple quasi-optimal processors, we will use the approximation

Ptm = since it is a reasonable approximation and has the advantage

of being independent of CNRt.

To obtain Pb' we perform a similar differentiation except we use the

JJ
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statistics for the entire frame: = ( , ... R RM where the

R (s) random variables are conditionally independent jointly Gaussian
m

random variables with identical means, N b' and variances, N
2 ab 2

Setting the derivative with respect to u b of

(r(f) I Ho, P b ) to zero and simplifying leaves the 
implicit

equation for b

M

(s) A A A
( r - N v b - M( 'b + I ab

m=

MNa b

where Ki( a) - 4( Q + a)- 4( a ) which is an increasingly weak

2
function of a as CNR increases. Again, if ab was not a function of ib

through CNRb, the last term would not appear and the equation would reduce

to 'pb = the frame sample mean, as our intuition would lead us to guess.

Even with the ib- Cb relationship, the last term is small for large M.

So, we can take 'b = Pb as an even better approximation for the

background than for a target subframe.

With b and it set to their sample means for a frame and subframe,

respectively, we can complete deriving the processor. The conditional

densities are Gaussian under H0 and HI, so the log likelihood ratio is:

ab (s) m b)

logi. . log -7) + (rm ( 4.35)

a tm Gb

We will drop the term involving the logarithm of the ratio of the

I
w. .- - - - . -. - - - .-
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.variances since this term is proportional to the logarithm of the contrast

ratio and the other term is proportional to the contrast ratio directly.

Then an equivalent processor for a Neyman-Pearson test is:
L A

log A (s )  r (s ) - N l( 4.36 )
gm m b

-This processor is very intuitively appealing. We choose as the target

subframe that subframe which exhibits the largest contrast (positive or

negative) relative to the computed background mean. The test is simply to

compare this contrast to a threshold.

Notice that this processor is not quite in the form

log AM = max( log A(S )  4.37
g m gm

• " as we would like since the quantity in the braces contains U which is a

function of R (s) for all m. However, since MN is generally large, we

know the variance of vb must be fairly small since Ub is approximately the

sample mean and the variance of the sample mean falls as I / MN. Because
*. of this, we will take 11b as exactly Ub, that is, treat CNRb as a known

quantity. Then the log likelihood ratio is in the desired form. Numerical

calculations with b = Pb ± 3a b give indistinguishable results with MN =

128 x 128 pixels.

Although we have justified assuming conditional Gaussian statistics for

R (s) via a Central Limit Theorem argument, we know for CNR -> the
m

random variable Rm(s) / N i has conditional chi-squared statistics under

. .
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H S'with mean 1 and 2N degrees of freedom. Let's compare this chi-

squared density to a Gaussian density with mean 1 and variance u2/N 2.

We will do this comparison by calculating PF versus A' for both models

with X'= X / Nj b for PF down to about 10- . This test allows us to

compare the tails of the densities, which are of most interest to us,

where the Central Limit Theorem arguments don't yield very accurate

results. Figure 4.2 shows this comparison for M = 1000. Although the two

models converge more as N gets larger, even at N =100, the two are still

very far apart for even fairly high false alarm rates like 10-4 . Of

course, the problem is worse at more reasonable PF values like 10-6 which

are farther into the tails of the density.

Although we obviously cannot use the Gaussian statistics to analyze the
.,

processor's performance, we will continue to use the processor derived

from the Gaussian statistics assumption because it is so intuitively

appealing. For analysis purposes, we will use an approximation derived

from the Chernoff bounds [4]. For CNR -4 - , numerical calculations show

this approximation differs from the exact results (the chi-squared

statistics) by only a percent or two [18].

H. Range Only Processor

In this section we will examine a processor which uses all the range

information available and discards all the intensity information. For

each pixel we measure the peak over all Q bins and record the bin number

where the peak occurred, Q n We ignore the intensity of this peak.
mn

We derive the range only processor using the same techniques we derived in

S-Ik
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section C above using the marginal coarse range probability mass functions

we derived in the previous chapter. As usual, we take each pixel and

subframe to be independent of the others. The resulting generalized

likelihood ratio test is:

A(f) = max ( 4.38 )
g m

N

max J Pr( Qm=qn I H1, Pr( tt)' Q
aOt' n = 1

Qt

Pr t N

171 Pr( Qmn qmn IH 0 , Pr( Ob)

n= 1

where the denominator is evaluated with Pr( aOb ) which we in turn

derived from:

M N (4.39

-. max q Pr( m =q n j H0, Pr( ) ) .
Pr( cOb) m n 1

Taking the logarithm, substituting the probabilty mass function in,

differentiating with respect to Pr( Ob ) and setting the derivative to

zero, we solve for:

" M N

Pr( )=q5 . ( 4.40 )" ".., Ob q qmnQbmn

The estimate of Pr( ab ) is just the relative frequency of occurence of
.°ob

anomaly events for the entire frame. If there is no target in the frame,

the estimate corresponds exactly to the intuitive notion of the

--.

. .'7. .. . . . . .. . . .
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probability of no anomaly and the Law of Large Numbers [16]. If there is

a target in the frame, the assumption we made of M >> 1 makes the target

contributions to the estimate of the background anomaly probability

" dilute, and hence we may use the same intuitive interpretation of the

equation. Since MN is the number of pixels in a frame, it is usually

quite large, so the estimate can be very accurate, particularly at small

background CNRs. At higher CNRs, the estimate will be less accurate

(because the summation will be smaller so statistical variations introduce

larger relative errors). In the ensuing discussion, we will take the

estimate to be exact and so treat the background CNR as known, as we did

in the intensity only receiver.

Performing an identical maximization in the numerator gives the estimate

N

Pr( Ot )where J max { mnQ (4.41)
, ~ I-t<QT n =I

Again, Pr( aOt ) corresponds to our intuitive notion of the probability

of no anomaly. Here jm is the number of hits in the range bin, from among

the QT potential target range bins, with the most hits for the m-th

subframe. However, since N is generally not very large ( <100 ), the

estimate may not be very accurate. Hence, we cannot take this estimate to

be exact. Physically, jm is the same as it was for the joint range and

intensity processor we already examined and pictured in figure 4.1.

Without the intensity information however, we choose Qt in a different

manner in equation 4.41. Now we simply choose as Q the bin with the most

hits from among the QT potential target range bins in the subframe picture

(the last line) in figure 4.1. We can see intuiLively now why the range

ri e J, r.
- ~. . . . . . .
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only processor must under-perform the joint range and intensity

processor. The joint processor takes into account not only the number of

hits per bin, but also the average intensity for those hits. Since

anomalies occur in noise bins, they have intensities with mean 1, which is

always less than the target bin with mean CNR + 1. Thus, the joint
t

processor can weight the range bin measurements to make implicit guesses

at whether or not some hits correspond to anomalies. Without the

intensity information to help weight the decisions, the range only

processor will make poorer decisions, particularly at low CNRs where

anomalies occur more frequently.

If we substitute these quantities into equation 4.38, take the logarithm,

and define the number of hits at the known background ranges as:

N

km = Z sq mnQbmn 4.42

n= 1

then the generalized log likelihood ratio processor is

log (f) =max( log A (s) , log Pk(s) _lm kM gm gm piJmk + P2

( QT- 1 ) Pr( '3Ot )
. log

" 1 - Pr( aot ) , and 4.43

lo Q - 1 ) Pr( a Ob )

log

1 - Pr( 'cOb

1&4
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A

( Q -1) (1- Pr( aOt )
log •

( QT- 1) (1 -Pr( cOb ) )( Q- ) Pr( 10b )

log
1 - Pr( aOb )

Notice that P1 and P2 are functions of Pr( cOt ) and so are functions of

m" Because of this, we can plot P1 and P2 as functions of jm for various

values of CNRb and get a feeling for how sensitive the processor is to the
values ofP and Po o h

values of P1 and P2" Figures 4.3 and 4.4 show such plots for Q = 100 and

«QB << Q = QTo a realistic condition for either a large range uncertainty,

L or a radar with good range resolution. Although both parameters can

vary over a wide range, the probable values for jm for reasonable target

CNR values (> 10 dB) will place the parameters in a relatively narrow

range. This being the case, an approximately equivalent processor for a

Neyman-Pearson test is the much simpler formula:

(S)SlogA J -k (4.44
gm m

, In fact, this processor is exactly optimal for known target CNR and zero

contrast. We will use this processor for all CNRs since it is a fair

approximation to the optimal processor and it is possible to analyze its

performance without too much difficulty.

Physically, this processor determines whether the presumed target range

bin or the background range bins had more hits and how many more. As CNRt

increases in the subframe containing the target, log A gm(S) grows more

positive. As CNRb increases in a background subframe, the statistic grows

more negative. The processor looks for range measurements to clump or

"I.
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aggregate at the background ranges (the k term) and somewhere in the QT%, m

potential target range bins (the jm term). It then makes a decision based

on which clump is bigger and by how much. Colloquially, we can say that

whereas the intensity only processor looks for the maximum intensity

contrast, the range only processor looks for the maximum range contrast.

J

I. Other Processors

We have derived processors for intensity, range, and joint intensity and

*range measurements. We could also imagine incorporating Doppler

measurements into these processors. However, our analysis in chapter 3

indicates we need do no further work on the processors because of the

range-Doppler duality we encountered. Anywhere we treated range

measurements, we could substitute Doppler measurements, or include joint

range and Doppler measurements. The processors don't change form,

although some parameters may change values. Because of this duality, we

won't treat Doppler processors explicitly until chapter 6 where we will

consider how the performance scales with changes in the system parameters

that differ between range and Doppler radars.

Now that we have derived the processors we will use, we will derive

- performance measures for them in the next chapter.

A .

w

.f. . .¢ ¢ ¢ . .. ¢ " " " ' - " " , ' ' " " , ' '
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V. Receiver Performance Derivations

Recall that we wish to find PF and PM for intensity only and range only

receivers when they evaluate an entire frame of data. However, we already

know we can easily get the frame level performance directly from the

subframe level performance. Consequently, this chapter derives equations

for PF(s ) and PM(S ) for a receiver measuring data only over a single

subframe. The translation to frame level performance is direct. (For

notational simplicity we don't use the (s) superscripts in this chapter

nor the then superfluous m subscript. If there is cause for confusion, we

will reintroduce the subscripts and superscripts.)

A. Intensity Only

-Recall from the last chapter the quasi-optimal intensity only processor

tests for subframe contrast:

N H1
2] I - N W7b I > X a N i X1'.I nN < b ' " ( 5.1 )

n= 1 H0

If N = 1, we can analyze the processor exactly. The analysis is fairly

simple and, using the exact statistics derived in chapter 3, the PF and

PM, in terms of the threshold, are:

P 1 - 1 - e + ' Q ( 1 - eab( 1 + lb ) +

~ - 1 - X' ) Vib )Q-1I a(1-~~" (1-\

e I I - e-ab - b  )U( -p'

1 A
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-( Q1b )a
PM -- ( 1 - e -a(-e 4

e'' -( i- X' b )Q-1I -at I- 1 ' )b U
= i -e ( 1- e )u

X' >0. ( 5.2 )

Reasonable PF performance ( <10 -2 ) requires X' > 1 and so

PF = exp[ - ab Pb ( 1 + \' ) I , which gives

' = - ( 1 + log( PF a / ( a U'b ) ), and 5.3 )

a a t/ab
PM -: 1- exp[ ab log(PF) PF

M b

These equations are very similar to the equivalent equations for a

processor which measures intensity at the known target range. The

- equation for the threshold, X', in terms of PF in 5.3 is identical to

that for the known range processor with clutter [14]. The equation for PM

in terms of PF in 5.3 is nearly the same as its (clutter free) analog for

the known range processor. The only difference is the exponent to PF
which, for the known range processor, always exhibits an effective CNRb =

0.

4 Notice that with zero contrast, the performance reverts to the guessing

curve (PD -- P F' as we would expect for a processor which searches for

contrast. Similarly, there is an obvious asymmetry between performance

for positive and negative contrasts of the same magnitude. This occurs

because the density function is so asymmetric with a mode close to the

origin and long tails out to positive infinity. Finally, notice that the

, ,-
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processor performance is independent of Q. This occurs because X' is

large enough to make the Q-dependent terms 1.

Although the single pixel processor is not of much practical importance,

the ability to make an exact analysis gives us information which may carry

over to multipixel processors as well. We should not be surprised if

multipixel processors don't perform well at negative contrasts and the

performance is relatively insensitive to the value of Q.

When there are multiple pixels in a subframe, we have already noted the

statistics are too complicated to analyze exactly and neither the Gaussian

nor the chi-squared limits are accurate enough for general N and CNR

values. Instead we use an approximate performance measure derived from

the Chernoff bound [4]:

N

Pr( In > X H, - exp[ -N( s -i( s ) - s )

n ( 5.4 )

1 exp[( s ) erfc( V N s s ) ),

yi( s ) log( E[ esl I Hi ] ), i = t or b, s > 0

The parameter s is free, but the optimal choice is when yi( S = X

The first exponential is just the Chernoff bound and the other two terms

are the correction term. For Ns2 7( s ) > 9, we can combine terms and

%- " approximate the correction term by:ii 1 1 2 s rc

! exp[ I 2N I2 ex[ N s y ( s)]erfc( N s2 yi ( s ))

,NO
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1

( 5.5)
2TT Ns :is )

1

If the test in equation 5.4 is I. < ,t he only change is in the sign
n

of s in the equations, so s < 0.

For the multipixel intensity only processor we find that:

=Pr{ J Z I N V'b I > X HOI

N

=Pr( Z >n<N 'b 1~ + ' H) jQ +
n= 1

4'..

Ji N
Pr[ I < N X ( x' ) I HO  +

n n b

P Pr{ I (Ti-N 11b)<H 5.

n=1

[ ) = o s [ B ( -> N 1 ( 1,

Pr[ 'n < N lb ( I + l')[H,
n

.-QIi~i"The conditional semi-invariant moment generating function, Yi ( s ),is:

y i( s )=log( s [B( Q, a i -s )-B( Q, -s )])(5.7)

i= b or t,

%4'

4,"*
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where B( * ) is the beta function:

r~x) r( y)

B( x,y). . ( 5.8)
x + y)

The s parameters in terms of the thresholds are:

yi ( s = 1b ( 1 + X' ) , ( 5.9)

0 < s < a. for the > X tests, s < 0 for the < \ tests.

*-: ' Going from this point to explicit numerical results requires much calculus

and algebra, but there are no new theoretical developments, so we will

skip these steps. In the next chapter we will present and discuss results

of actual computations.

B. Range Only

.- . We will handle the range only processor in a completely different fashion

from the intensity only processor. From the last chapter, the processor

'- is, again for a single subframe, one which searches for clumping of the

range data in the background and target bins:

H I

-k . (5.10)

H 0

The PF and Pm values are:

-S
94 PF Pr( j-k > X H 0

- ~ ~ ~ ~ ~.'-. N



- 93 -

k
N max

E E Pr( J = j, K = k H 0
J = Jmin k = 0

Jmin = max( 0, X ) , max = max( 0, min{ N - j, M- jr} 5

P Pr( j- k < X\ H H1 ( 5.11)

N 3max

T T Pr( J = j, K = k HI )k k kmin j =0

kmin = max{ 0, -X max max[ 0, min( N- k, k + X } .

Under both hypotheses we assume in case of a tie, j-k = N ,we choose

hypothesis H These are simple sums, but, of course, we need to find the

joint probability mass functions first.

To find the joint probability mass function, start with a different mass

function we can find relatively easily. We will divide the Q range bins

into QT potential target bins and QB potential background bins as before.

From the geometry discussed in chapter 3, we know these latter QB bins are

always the most distant range bins for a particular subframe and, for a

particular pixel, one of them is the known background range bin. Call J.

1 < i < Q the number of hits in the i-th potential target bin, K the

number of hits in the correct background range bins (precisely which bin

is "correct" depends on the pixel number within the frame), and L the

- number of hits in the Q - 1 background bins not at the correct background
I-B

range. Under hypothesis H0 we can write the joint mass function

Pr( Jl=Jl,...,JQ =-jQ ,K=kL=IIHo ) fairly easily. It is simply a

multinomial:

IL
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Pr( J, jl' JQT " To K k, L 1 H0 )

1 I 1 Pr( a N

.1 Pr( 0bk Q 1 '"Ob N-k

j:. .. J QTIk1I tOBQ

(N) Pr( Ob (k) B )1 1 P( aOb Nk

(N -k- )!
Sj( 5.12 )

QT'

for j1 , ' jo k, 1 non-negative integers obeying

j +...+ jo = N - k - 1. Now define J = max[ Ji T= q To

<. convert the mass function for the J.'s to a mass function for J we must

sum over all combinations of the Ji's subject to the stated constraints

and the additional constraint all ji - j:

Pr( J j, K = k, L = 1 H0 ) ( 5.13 )

- Pr( J, = Jl' . K = k, L = 1 j H0''<Jl = 0 ... JQT 0
TT

'%*
Pr( )k (N k) Q 1 1 Pr( ab Nk(Q)

k 'A~b QN-k-l)!-

' "'-C c (Q T ) = ( N - k - 1 )

j,N-k-i . . o ..j '
""Jl = 0 J QT- 0 1l' QT"

._J l + ... + JQ T = N - k - 1

(QT) QT=N k-

In words, CNk l is the number of ways to order the elements of all the

*91.
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sets { JQ = i, .. , T such that we meet the constraints stated

above. Now sum over 1 to get the mass function we want:

-. .- [1 Pr( Ob]N

Pr( J j, K = k H )= (I) r )k Ob @ Pr( ] N
N-j-k N-k) QQTZ ( 'Ic ' 1' Tq-5.41

1 .i ( QB -I )l C j,N-k-i 5.14

Evaluating CNk-IT is computationally cumbersome, but once we have the C-

values the remainder of the calculation is straightforward. Under

hypothesis H1 the procedure is similar though not the exact dual. To

start, we assume the maximum, T, occurs in the correct (true target) range

bin. This assumption simplifies the derivation and we will shortly see

,.' the error it introduces, for N and CNRt values of interest, is very

small. Call the event in which the maximum J. occurs in the correct bin

3 ]  3 0 and the event in which the maximum J'l occurs in the wrong bin 3 1 *

Then the mass function we start from is:

N-j-k

Pr( J =j, K =k, 30 I1 H, Pr( J j, K = k, L 1, Ht )'-.- -- ' -- = =0 =

(N) ( N - j) Pr( a LOt]

N--k1 N-j-k (N-j-k (QB 1 ) C,.(T -
5.1

". B ( j,N-j-k-1 " ( 5.15 )
"o'-77"1 : 0

The difference between C' and C is, since we have O' there is one less

sum in the sequence of summations and there are only QT - I bins to

consider. For N = 10 and CNR t  10 '3, both fairly small values,taus

i1

- * - . -'
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Pr( B0 I H, ) 0.99966. So, 0 is essentially always true for cases

of interest to us.

With these probability mass functions we can compute PF and PM directly

using the equations in 5.11. However, PF is not a continuous function of

the threshold X since the test statistic log A gm(s) is discrete. We

touched on this problem at the beginning of chapter 4 and noted we could

make PF a continuous function of X by randomizing the decision rule with

a well known procedure. We will use this practice when computing PF and

P M for the results in the next chapter so we can use PF and PM values in

the range processor identical to those we used in the intensity

processor. This will make it much easier to do comparisons between the

two processors without introducing corrections to make the comparisons

seem fair.

Now we have processors for range only and intensity only receivers and we

have methods to compute their performance statistics. Actually performing

the computations can be a complicated numerical procedure, but detailing

the procedure would not contribute to the main point of this thesis and

there are no novel numerical techniques necessary. Consequently, we will

turn now to simply examining the results of these computations.

.'.w

'a
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VI. RECEIVER PERFORMANCE RESULTS

We have taken our theoretical development from the single pixel speckle

target IF waveform through a multipixel, multidimensional probability

density function and derived quasi-optimal processors for two important

receivers, the range only and intensity only measurement receivers. We

2 have shown how to compute the PD-PF performance curves for these receivers

in the last chapter. These theoretical developments are all we need to

meet the original objectives of this thesis. Now we will present some

actual numbers to demonstrate the relationships embodied in the processor

and performance equations we derived in the last two chapters. In this

chapter we will first derive relationships for how the CNR (target or

background) scales with changes in various system parameters and then

actually compute the performance curves for some cases of these processors

and compare the range and intensity only receivers. As in previous

chapters, we will perform our calculations only for a ranging radar and

comment afterwards on how to carry the results over to Doppler and range-

Doppler receivers.

A. System Parameter Interdependence

Our equations for system performance involve many parameters: M, the

number of target sized subframes in one frame or field of regard; N, the

number of pixels per subframe or on target; Q, the number of range bins

per pixel; CNRt, the target CNR; CNRb, the background CNR; and CNR'

which we will define as the contrast ratio, CNR t/CNR . These parameters

are not all independent and some depend on other system parameters which

do not appear explicitly in the performance equations. However, the radar

% % % %
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equation, 3.17, determines how these parameters interact to affect

performance:

P PT A -2a L1
CNR i p B i = e 6opt ( 6.1)

h vo B Tr L.

For simplicity of presentation, we will use a = 0 and 6opt = 1 and keep

fixed ri/h v and target and background reflectivity P. so that:0 1

CNR i = Pi( 6.2)
Trh v B L.

0 1

Now consider how the choice of the parameters listed in the first sentence

above affect the CNR through the radar equation, 6.2, and vice-versa. To

do this, we will first review the models for the target and its

environment and decide which elements of these models we will have

reasonable control over and which we won't.

We will assume a fixed search volume and target size. The fixed search

volume corresponds to a fixed angular uncertainty, Qu steradians, and

fixed range uncertainty, Lu meters. These assumptions simply say the

radar designer has no control over the size of the target or where it

resides in space. For any given problem, however, the radar designer

knows the fixed values of u' Lu, and the target size, 2 steradians.

Notice we jumped from knowing the target size to knowing the target

angular extent Qt. Formally, this requires knowing the target range, L,

which we don't know. However, if we know there is only a small relative

difference between the minimum and maximum L values, Qt will be
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approximately constant for any L in the range of permitted values. We

have assumed a known Qt all along by assuming a known N. A system where

2 is not known would require treating N as an unknown parameter in the

fashion of chapter 3.

For a given Lu, we have

L 2L
- -( 6.3
1 ct
r r

where 1r is the bin size or range resolution in meters and tr is the bin

size or radar pulse width in seconds. Since all the performance equations

depend only on Q, Lu does not enter the equations explicitly. For a given

Qt, the value of N depends on the angular resolution, AQ steradians:

N ( 6.4)

however, M remains constant at

M u (6.5)

t

Changing the radar parameters has no effect on M. Because this is true,

and because performance depends on M in such a predictable fashion, we

will not concern ourselves too much with M. We will fix M = 1000, as we

did in chapter 5 for a single pixel, for the remainder of our work. This

corresponds to a frame of about 30 by 30 subframes.

We should mention there is one complication with this assumption. Some of

ElV
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our derivations assumed a large M value. Although we didn't define what

we meant by large, cases of M 10 are probably too small to allow the

approximations to remain valid. We won't deal with this problem, but we

should at least recognize it exists. Notice that N depends on 2 which

in turn depends on the receiver aperture Ap, whereas Q depends on tr which

*in turn sets the matched filter bandwidth B.

Now let's examine the B or Q dependence more carefully. We will let B =

l/tr since we used a matched IF filter. PT is the transmitter peak power

and it is related to the transmitter average power, PA' by

TPT
P T =P A ---> T = P T tr PAT .

= -- T= Pt PAT, ( 6.6)
t Br

where T is the pixel dwell time or inter-pulse time, and 1/T is the pulse

repetition frequency (prf). There is a maximum pulse repetition frequency

in a ranging radar that is set by the desire for unambiguous range

information [1], [7]. If we want unambiguous range detection out to range

L, we must have T > 2L/c; for L = 3 km this translates to T > 20 visec.

We will assume T takes on its minimum value, since larger values lead to

longer frame imaging times, MNT.

If we assume our laser is average power limited, PA is constant. Since T

is also constant, PT / B is a constant by equation 6.6. Hence, changing Q

does not affect the system CNR.

If we assume our laser is peak power limited, PT is constant and

.%
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1 c Q
B - M I ( 6.7)

t 2 L
r u

so the system CNR is proportional to 1/Q. In this case it is useful to

define a quantity Q(max) as the largest number of range bins,

corresponding to maximum bandwidth, B(max), operation of the radar. In

terms of these maximum parameters we have:

B c Q(max ) Q B(max) Q 6.8
2L Q(mxQ(m)

The value Q(max) exists because we have assumed all targets and background

are not range resolved within a pixel. If we make tr too small (Q(max)

too large), we will start to resolve the fine range structure of the

target. There is also an indirect N dependence in Q(max). For a given

target, if N is small, each pixel will cover a larger area of the target

which leaves more opportunities for the target to be range resolved. For

large N, we have a larger Q(max). We won't deal with this weak N

dependence in this thesis.

Turning to the N parameter, we use Fourier diffraction theory [21] and

equation 6.4 to obtain

1.2 x 2 1.2 2

A - N (6.9)

t

where the factor 1.2 arises from the Airy disk radius, 7 , factors of 2,

etc. If we define a maximum aperture Ap(max) and a corresponding maximum
p
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N, N(max) we get:

- 1.2 X 2 N (max) N(max) (max) 6.. Ap = - = (Ax PN~'761
"'~~ ~ t N-p7 61

Finally, in terms of the CNR at maximum aperture and maximum bandwidth,

A(ma x) P

CNR 0  h m ax) ' (6.11)
1 h v T7 L

0 1

we have the scaling laws

,"'"'CUP! )  Q (max) N lite
(maxax)

(0 N
CNR.x Q " T limited

CNR. ( 6.12 )

CNR ) N P limited

These relationships are important for making reasonable comparisons

between two processors with different resolution parameters imaging the

same target and environment. We will return to these equations when we

compare processors with different resolutions and in the last section of

this chapter. For individual processors with fixed N and Q values,

S., however, there is no need to bother with the scaling factors.

In all the following calculations, we will use N(max) 40 pixels and

Q(max) = 0000 bins.

6;/
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B. Intensity Processor

Recall the quasi-optimal intensity only processor searches the frame for

the subframe which exhibits the most contrast relative to the computed

$ -background intensity. If that contrast exceeds a threshold, the processor

declares a target present in the subframe with the maximum contrast:

N 
H1

ax( I N ( 6.13)max[I  mn- N b < .

n I H0

Using the equations we derived in chapter 5, we can plot PM versus CNRt

for this processor at given PF' N, M, Q, and %CNR values. Figure 6.1

shows the frame level performance results for N = 10 and 20 pixels, M =

1000, and Q = 10. For each plot there are two sets of two curves each.

'a'; The top set is for CNR = +5 dB and the bottom set is for CNR 10

-6
"- dB. For each set, the top curve (dotted line) is for PF = 10 and the

* bottom curve is for PF = 10- 3 . For CCNR - 0 dB, all the curves are

indistinguishable from PM = 1.0. The value of Q = 10 is fairly arbitrary

because, as we shall see shortly, Q is not very important to the

performance of an intensity only processor. We expected this Q-

insensitivity from our single pixel work in chapter 4.

The method used to generate the numbers in these curves has introduced two

quirks in these plots which the reader will easily notice. In the N = 10

plot, figure 6.1 (a), the lines for PF =10 don't extend to CNRt  30, dn'=xtn t N = 3

dB. This is not a major problem since the curve has approximately reached

its asymptotic value by the time the data stops anyway. In figure 6.1 (b)
.°,

-. . * a.,.,
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for PF = 10- 3 and CNR = 5 dB, there is a bump in the curve at very low

CNR t values. This arises because the Chernoff bounds don't work well at!t
estimating large probabilities. This is not a real problem since this

region corresponds to very poor performance anyway.

The first thing to notice on these plots is the asymptotic behavior for

large CNR t . As CNR t  the PM does not go to zero. If we use the

unit mean chi-squared random variable with 2N degrees of freedom to model

R (S)/E[Rm(S)IHi] for very large CNR. values, i = t, b, we can morem 1

easily understand this behavior. Let's define a random variable Imn(
0 ).

I
mnn

I(0) mn . 6.14
mn E[ I H0  6

where I m(0) is a conditionally chi-squared random variable with 2 degreesin

of freedom and mean 1 under Ho, mean ,CNR under Hi. The sum of N

conditionally chi-squared random variables with 2 degrees of freedom is

another conditional chi-squared random variable with 2N degrees of freedom

[16]. Now let us compute the relative distance between the two

conditional means:

N N

IE[ Z (0) i H]- Z I(0)I H]l

n=l n=l
S"d ( 6.15 )

var[ 1 l(0) 1 H0
n= 1

: I i- CNR I.

Notice for a fixed contrast ratio, the distance is fixed. As we increase

.2. P .
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CNRt with constant CCNR' the densities converge to these chi-squared

densities and the distance between the densities for the intensity

processor's decision statistic under HO and HI don't spread farther

apart. Consequently, the two hypotheses don't get any easier to

distinguish as CNRt increases at constant contrast, so, PM approaches a

nonzero asymptotic value.

* Physically, we are at speckle limited performance. The CNRs are so large

there is virtually no LO shot noise to contend with and the speckle

induced intensity fluctuations alone make the target and background

difficult to distinguish.

Equation 6.15 also helps explain what happens to performance as a function

. of CNR" For 1CNR = 1, no contrast, the distance is zero. Since,

intuitively, our processor searches for contrast, it is logical it would

* - fail completely when there is no contrast. However, equation 6.15 also

helps explain the asymmetry between performance for positive and negative

contrasts of the same magnitude. For > 1, d grows linearly with- -. CNR

" NR" However, for CNR < 1, d -- 1 as contrast increases in

magnitude. This limiting value, a result of the asymmetry in the

.ensities around their means, limits the performance for even very large

negative contrasts.

Physically, for negative contrasts the mean target intensity is lower than

the mean background intensity. However, the speckle induced intensity

fluctuations in the background measurements often give intensities less

than the mean and close to the target intensities. This makes the two

,IN.,
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virtually impossible to distinguish.

Now let us examine the effect of Q and N, i.e., range and spatial

resolution, on the performance. We will plot PM versus Q or N for fixed

SF' M, and CCNR for both laser power models. Figure 6.2 plots PM versus

Q for N = 10 and N = 20 at a CNRt (0) of 16 and 20 dB. Figure 6.2(a) is

for the constant average laser power model and figure 6.2(b) is for the

constant peak laser power model. Figure 6.3 plots PM versus N for Q = 10

and 1000 at CNR (0) of 16 and 20 dB. Figure 6.3(a) is for the constant
t

average laser power model and figure 6.3(b) is for the constant peak laser

power model. All plots hold constant M = 1000, PF = 10-6  and %CNR = +10

dB. These figures incorporate the performance corrections for different N

and Q values we derived in section A of this chapter.

For the constant average laser power model, the performance is almost

completely independent of Q as we expected from the single pixel

equations. To the extent there is some dependence, the performance gets

poorer as Q increases because of the increased probability of anomaly.

For the constant peak laser power model, there is a Q dependence, but it

is due to the CNR dependence on Q. As we decrease Q from the full

bandwidth value Q(max) , the CNR rises and performance improves until it

saturates at the speckle limited values. The slight drop in performanceEat very low Q values for N = 10 is not real. It is a result of the lack

of data at high CNR values mentioned in describing figure 6.1(a). (When I

ran out of data for higher CNR values, I assumed the final data point had
t

reached its asymptote. This assumption is not quite valid, as is obvious

from figure 6.1(a).)

'Ilk
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From the form of the Chernoff bound, we expect the performance to get

exponentially better with increasing N and figure 6.3 bears this out for

both models. Notice in the constant average laser power model the 4 dB

change in CNRt(0) makes a bigger performance difference than the 2 order

of magnitude change in Q. For the constant peak laser power model, the Q

= 0 curves coincide for both CNR (0) values because there is a 30 dB
t

(max)
increase in CNR from Q = 10000 to Q = 10, so the processors are in

their speckle limited regimes regardless of the 4 dB difference in the

CNRt(0) values. For the Q = 1000 case, there is only a 10 dB increase in

CNR t over the full bandwidth CNR, so the 4 dB change in CNR makes a small

difference. These curves are still very close to each other and the

speckle limited performance regime.

C. Range Processor

Recall the quasi-optimal range only processor determines the difference

between the number of hits in the presumed target range bin and the number

Sof hits in the known background range bins for each subframe. If the

maximum of these differences exceeds a threshold, the processor declares a

.target present in the subframe where the maximum occurred:

H 1

max[ jm - k ) > ( 6.16 )m <
m H0

, Using the equations we derived in chapter 5, we can plot PM versus CNRt,

Q, and N for the range only processor just as we did above for the

intensity only processor. (Since QB enters the probability mass functions
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for j and k, we would expect that performance is also a function of Q

In all ensuing examples we assume a square target with each horizontal

line of pixels on the target at a different, adjacent range bin number

from the adjoining line of pixels. Under this condition, N uniquely

determines Q B: QB = fiT] .) Figure 6.4 shows frame level P.versus CNR t

performance for N = 10 and 20 pixels, M = 1000, and Q = 10. Each plot is

for PF values of 10-3 and 10-6 (dotted lines). For each PF value there

are curves for C = +10, 0, and -10 dB.

For this processor, PM -4 0 as CNRt -> - for a fixed CNR" As both CNRt

and CNRb --> - , the probabilities of anomaly, the probability of choosing

the wrong range bin, for target and background -4 O, so E[ j - k I H 0 ] -4

-N and E[ j - k I H1 ] -- +N. But var[ j - k I H, ] ->0 for i = 0, 1,

so, if we define a d parameter as in equation (6.14), we find d --

- '. The two hypotheses are easy to distinguish and the performance improves

* . with increasing CNRt at constant contrast. Physically, since the

probability of anomaly goes to zero, the range estimates are always

perfect and so there is infinite range contrast.

We can also explain the behavior as a function of CNR by examining the

processor. The processor looks for range measurements from individual

pixels to concentrate or clump together in one of two range bins, namely

the target or the background bins. As CNR increases, the probability of

anomaly, Pr( ali ), drops so the clumping is more pronounced in bin Qt

for the target or bin Qb for the background. If we fix CNR and varyL t
CNR' we will change CNR b* As CNR increases for a fixed CNRt, CNRb

drops and Pr( lb .increases, so performance grows poorer. This is
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precisely what figure 6.4 shows: performance for a fixed CNRt varies

inversely with CNR"

Now let us examine the range only processor's performance as a function of

Q and N. We will plot PM versus Q and N for PF = 10- 6, M = 1000, and

CNR - +10 dB for both laser power models. Figure 6.5 plots PM versus Q

for N =10 and 20 pixels at CNRt (0) = 16 dB and 20 dB (dotted curves).

Figure 6.5(a) is for the constant average laser power model and figure

6.5(b) is for the constant peak laser power model. Figure 6.6 plots PM

versus N for Q = 10 and 1000 at CNRt (0) = 16 dB and 20 dB (dotted curves)

under the constant average laser power model.

Figure 6.5(a) shows performance for the constant average laser power model

at first increases as Q increases and then falls slightly. There are two

effects to consider to explain this behavior. As Q increases, so does

QT" Since anomalies occur in random bin numbers, the larger is QT' the

less likely it is that a random clumping of anomalies will be large enough

to mistake for a target. This causes performance to improve. On the

other hand, as QT increases, Pr( alt ) increases approximately

logarithmically [4]:

1
Pr( a a log( Q - + 0.577 ) , ( 6.17 )

which in turn reduces the processor's performance. These two effects

combine to produce the behavior in figure 6.5(a). Under the constant peak

laser power model, the increase in CNRt as Q falls overwhelms the weaker Q

dependence from the statistics. So, performance gets better very quickly

for decreasing Q.

I.
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Figure 6.6 shows that the range only processor's performance, under the

constant average laser power model, as a function of N improves

approximately exponentially in N. Since we are dealing with sums of

random variables (we sum the number of hits in each bin over the

subframe), the Chernoff bound applies to the tails of the range densities

(although it would be difficult to generate one explicitly for this

density). The Chernoff bound exhibits this exponential dependence on N

for any density. Like the intensity only processor, we see the effect of

the change in Q of two orders of magnitude is less important than a change

of 4 dB in CNR (O). There is no curve for the constant peak laser power

model because, for these parameter values, the 10 dB increase in CNR t due

to reducing Q from 10000 to 1000 is enough to drive all the PM curves down

below 10 - 6.

D. Performance Comparisons

Now we want to compare detection performance of the range only and

intensity only processors. There are many ways to perform these

comparisons, some probably more suitable than others for any given

problem. I have selected two methods of presentation. Both methods keep

in mind our goal of expressing system performance in terms of system

parameters and resolving power in the different measurement dimensions.

The first method is closely related to the way we presented results for

the processors individually in sections B and C above. We will plot the

quantity log PM( In t en s i ty ) / p ) as a function of Q and N,

where the superscripts indicate the processor from which we derived the PM

value. Figure 6.7 shows such a plot for the constant average laser power

I-
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model with M = 1000, P F 10-6 , CCNR = +10 dB, and CNYRt(O) = 16dB and 18

dB. A positive value indicates the range processor outperforms the

intensity processor. It may be difficult to see on these plots, but the

intensity processor does slightly out-perform the range processor for low

N and Q values. We saw both processors improve exponentially with

increasing N, but these plots indicate the range only processor improves

faster than the intensity only processor, hence the surface always slopes

up for increasing N. Physically, this corresponds to performance

increasing more quickly as a result of range clumping in the range only

processor than as a result of averaging out the speckle intensity

variations in the intensity only processor. The concavity of a plot for a

cut along a constant N value reflects the behavior in figures 6.5(a) and

6.2(a). Since the intensity only processor is only very weakly dependent

on Q, the result is mostly due to the change in performance for the range

only processor as a function of Q. We have already discussed this

behavior in section C.

This method shows quite graphically how the two processors perform

-. relative to each other, however, we need a different plot for each CNRt (0)

and we get no indication of the absolute PM for any point. Also, the

strong dependence of P on Q under the constant peak laser power model

makes it difficult to construct similar plots for that model.

Consider the other display method. Suppose we set certain performance

requirements: require meeting a P and P criteria at a given CNR and

F°M.*CNR* Then we can simply check whether or not a processor meets these

requirements as a function of Q and N. Figures 6.8 and 6.9 show several

.p -
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displays for M = 1000 and various performance requirements under the

constant average and peak laser power model, respectively. It is quite

easy to generate such displays for a given set of performance

requirements. An "" indicates the range processor meets the performance

criteria for that Q and N while an "0" indicates the intensity processor

meets the criteria. From the display a system engineer can, for instance,

determine what combinations of N and Q will give a range or intensity

processor which meets the necessary performance requirements.

Figure 6.8, for the constant average laser power model, shows the more

significant impact of laser aperture size, Ap, (reflected in the N value)

on performance relative to the resolution parameter Q. Generally the

processor either meets requirements for a given N or not, regardless of

Q. Figure 6.8(a) is for relatively high performance requirements: PD =

99.9% at PF = 10-6 and fairly low CNRt (0) values. At 16dB, we find the

point N = 20 pixels, Q = 10 bins where the intensity only processor out-

performs the range only processor. At higher Q values, > 300, the

intensity only processor fails, but the range only processor satisfies

the requirements for Q > 30. If we increase the CNRt(0) by only 4 dB, we

can meet requirements with either processor as long as N > 20.

.

In figure 6.8(b) we relax the performance requirements somewhat to PD=

95% at PF = 10 -3 ,but we reduce the contrast to only 5 dB. Here the

intensity only processors need at least N = 30 pixels to meet the relaxed

requirements because they perform so poorly at low contrasts. The range

only processors perform well enough, however, that for a 4 dB increase in

S(0), we can cut angular resolution in half, from N = 20 pixels to N =

.CN2tAO
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10 pixels and still meet requirements.

In figure 6.9(b), for the constant peak laser power model, the increase in

CNR for reduced Q allows the processors to meet performance at lower N

* values. This effect is strong enough to change the Q dependence for the

range only processor and make it perform better for small Q values. We

saw this phenomenon in figure 6.5(b) as well.

E. Other Processors

Now it is worthwhile to say a few words about other types of processors

and how to apply these results to them. We derived dualities for Doppler

and range-Doppler processors in the last two sections of chapter 3. We

can apply the results from this chapter to Doppler receivers as a result

of those dualities, but we must take care in how we do the comparisons

because of the system parameter interdependencies we worked with at the

beginning of this chapter. In general, we have to consider each

transmitter waveform separately and determine the effect on scaling

parameters, particularly for range-Doppler systems where complex waveforms

are often the norm.

For a Doppler only processor, we will use the long Gaussian pulse waveform

-' we used in deriving the duality of chapter 3. We must determine how CNR

scales with changing fr , frequency resolution, and hence Q, for this

waveform. We still have a pulsed Gaussian transmitter waveform, so the

equations in 6.6 above still hold. Now, however, the frequency resolution

is approximately fr - l/tr and the bandwidth is approximately B = 1/t =

f r If Fu is the frequency uncertainty interval width, Q = Fu/f = F /B.
r'.u r u
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In an exact analogy with the ranging radar, we will assume the problem

statement fixes F u . In the ranging radar, we could make tr arbitrarily

small without worrying about L u . In the Doppler radar, we must be a

-"S little concerned about making fr too small. Although the design of

Fourier transform devices like surface acoustic wave devices (SAWs) is

somewhat afield of this thesis topic (22], there is a time-bandwidth (TW)

product constraint on Fu t r . However, high time-bandwidth product devices

are available [22] so we will assume F is small enough that we can

increase the frequency resolution without affecting Fu . Under this

condition,

P P Q
T pA T  - T( 6.18 )
B F

Now we can write how CNR depends on Q (the N dependence has not changed

from the range radar analysis):

{ CNRO) .N Q Pl imited
i (max) -(max)

CN.=, (6.19)CNR~i N
CRCNR( O )  N PA limited 61

i (max) *AI N

where i t or b.

-(0-

Here CNRi(O still corresponds to CNRi at N = N(max) and Q = Q(max). Now,

however, by equation 6.18, Q(max) corresponds to minimum IF bandwidth

instead of maximum IF bandwidth. If we defined a minimum Q value, Q(min)

and defined CNR (0) at N - N(max ) and Q = Q(min), then the scaling law for

CNR. would be the same as equation 6.12 for the ranging 
radar with Q((max)

" ' (min)
replaced by Q Then the plots of figure 6.9 would still apply to the

', , . .
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Doppler only, constant PT model analysis except the Q labels would

reverse, running left to right from Q = 10000 to Q = 10 (i.e., take a

mirror image of each plot through an axis at loglO(Q) = 2.5). However,

Q(max) still corresponds to maximum Doppler resolution which is a more

physically meaningful quantity than Q.min). Analogous to the range radar

case, there is a limit to how fine we can make the Doppler resolution. If

we make the resolution too fine, we will start to resolve the fine Doppler

structures of the target like vibrations and rotations of various parts of

the target within a pixel. This violates the unresolved Doppler

assumption we used in the derivations. Consequently, we will use the

definition of CNRi(O) in terms of full aperture and minimum bandwidth.

Obviously, we can apply the constant PA model results for a ranging radar

directly to the case of a Doppler radar. The ranging radar constant PT

results don't translate to Doppler results so easily because the two

radars have opposite CNR dependencies on Q. However, we can make plots

like those in figures 6.8 and 6.9 for this new CNR dependence on Q.

Figures 6.10 (a) and (b) plot the same performance and contrast cases as

in figures 6.8 and 6.9 but for this new Q dependence. Now as we decrease

the Doppler velocity resolution, the transmitted pulse must grow narrower

and so the IF bandwidth must grow larger. This causes the CNR to drop.

The data base used for all the plots in this chapter only goes down to

CNR = 10 dB, so when Q falls low enough that CNR falls to below 10 dB,

ot t

we assume the processor cannot meet the performance requirements.

(Realistically, we don't expect much out of any processor at such low CNR

% levels.) Because the CNRt values fall so quickly, figure 6.10 (c) plots

the same performance and contrast cases as in figures 6.10 (a) and (b)

ft'.a
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except for CNRt (0) 30 dB so we can get more points on the plot before

CNRt falls below 10 dB.

A drop in Q from 10000 to 1000 reduces the system CNR by 10 dB. This

effect dominates the performance plots in figure 6.10. This effect is

strong enough to overwhelm the much weaker underlying Q dependences in the

processors which we plotted in figures 6.2 (a) and 6.5 (a). Both

processors exhibit degraded performance for decreased Q. For any fixed N

value, however, the Doppler only processor always performs at least as

well as the intensity only processor in these cas-s.

-The poorer performance of the intensity only processor at low contrasts is

still readily apparent in these plots. If we have only 5 dB of contrast,

even at CNRt (0) = 30 dB we need at least N = 30 to achieve the performance

standards with the intensity only processor. At the same CNRt(0) value,
t

the Doppler only processor meets performance requirements at N = 10 for

both performance and contrast cases.

The plots in figure 6.10 give us additional insight into the effect of

changing bandwidth over that gained from the plots in figure 6.9. In

figure 6.9, the change in bandwidth only improved an already reasonable

CNR. Here, the change (increase) in bandwidth reduces the CNR and we can

see quite dramatically the effect the falling CNR has on performance.

%q

We will conclude this section and the chapter by doing a brief analysis of
Kthe range and Doppler case using the thumbtack ambiguity function of

figure 3.3, where T is the duration of the waveform and B is its

%

N
SI
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bandwidth. With this case we have a bit more difficulty being specific

about the relationships between CNR and T and B because we have not

specified the waveform explicitly and we cannot specify the duty cycle,

t /T in our notation, based solely on the ambiguity function. (Actually,

%the ambiguity function uniquely determines the waveform, but there is no

general procedure for inverting an ambiguity function to find the

corresponding transmitted waveform.) Microwave radars often use coded

pulses, up-chirps, down-chirps, and combinations of these waveforms [20].

We will assume a duty cycle of 1 (or at least a duty cycle independent of

. T and B) so the PA-limited and PT-limited cases are identical. This is a

good assumption at least for the CW chirped waveforms. Now we will define

two Q related values: = FT, the number of Doppler bins, and QL = LUB,

LC-.i the number of range bins, with Q = QFQL (see figure 3.4). For a unity

duty cycle,

T P A PT 2 Lu

. B B QL c

N Q(max)

CNR. = CNRNO )  L ( 6.19 )
1 N-- x QL

exactly as for the ranging radar with constant P There is another

consideration, however, which won't permit us to use the ranging radar

analyses directly when changing the value of Q or QL" When computing

performance numbers, we must use the value Q = QFQL since it is this total

Q which influences the peak detector and Pr( Ot 0 ). However, when we

change Q and examine the effect on the performance through the scaled CNR,

we must scale only on changes in QL with no scaling for changes in QF"

u S t : l ..d -..........
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This brief analysis is meant only to show how the scaling laws can be used

in a range and Doppler analysis. For specific waveforms, more precise

analyses are possible. However, we should still expect to see different

dependences on QL and QF in the scaling laws while the performance

equations remain a function only of Q.

4,

d'
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VII. SUMMARY AND CONCLUSIONS

In this thesis we have attacked the problem of obtaining analytical

expressions for the performance of laser radars as a function of several

signal dimensions for multipixel targets. To derive such expressions, we

proposed a reasonable model for real targetF and their environments in the

form of a vertical target against a sloping background at unknown range

and location. We derived an expression for the IF signal in the radar for

a single pixel based on the diffuse speckle target model and used the

components of our target and environment model to incorporate the range

and spatial information. We derived near optimal intensity, range, and

joint range and intensity measurement processors sacrificing optimality

for simplicity where necessary without over-simplifying the model. We

N. were able to derive performance measures for two of the processors and

compute the performance as a function of the radar parameters and

- resolutions. Finally, we examined some specific cases of the results and

explained physically what phenomena were at work to give the observed

results.

%4

What we found qualitatively was that the range only processor generally

outperforms the intensity only processor. This comes as no surprise to

.4 researchers in this field. However, we were also able to make

quantitative statements, and this is something new to this area of

research. For a given set of parameters, we can say which processor will

perform better and by how much. We can deduce the regions where an

intensity only processor outperforms a range processor and by how much.j. We made quantitative statements about how sensitive performance is to any

+ + + .+ + + , , e -+ ,. + . , + + + -' + '.? -., ++ + -,+ -? . + + .-., '.,.- ..- , , -' + ..-+' + -.,
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of the system parameters we investigated (N, Q, CNRt, and C CNR) -

Although we achieved our stated goal for the thesis, there are several

areas where future work could extend the results. The most important of

these areas involve relaxing assumptions and making the models even more

realistic.

The first assumption which we might relax is the assumption the target

aligns exactly with a subframe. Although this assumption is probably the

most physically unappealing of all, it may be the least important. We saw

(equation 4.7) the system performance depends on the performance for a

single subframe of data. Once we have the performance or statistics for a

single subframe, the overall system performance comes directly from

maximizing over the subframes. If we take a window the size and shape of

the target and slide it around the frame (like the dotted target outline

in figure 2.5) collecting a subframe statistic for each possible window

Vi location, we would collect about MN subframes statistics, each

statistically correlated with N other subframe statistics. Consequently,

the difference between this model and the target aligned with the subframe

*model is simply maximizing over MN dependent random variables or over M

independent random variables. Whether we maximize over independent

subframes or statistically dependent subframes tells us nothing new about

laser radars per se. Furthermore, the number of subframes is independent

of any of the radar parameters (chapter 6, section A). The one factor

which does change is the statistics of the subframes if the target is not

aligned exactly with the subframes. However, in the absence of noise, the

maximum contrast in either intensity or range space must occur when the

%
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window aligns with the true target location. All these factors

considered, it may be more productive to concentrate on better

characterizations of the subframe statistics rather than better models for

the subframe maximization procedure.

For the subframe model we used, the most important extension of the work

is probably an analysis of the joint intensity and range processor in

chapter 4, section F. This will probably involve simulation, but there

may yet be further analytical steps an investigator could take.

The final general area for future work on the models is in the model for

the target and its environment. Here there are several ways the models

could improve.

First, there are still parameters which we should have treated as unknown

in a completely general model. Two of these are the target size and the

target shape. Treating target size as an unknown parameter will involve

adding N to the set of unknown parameter in vector A in chapter 4.

Assuming an unknown target shape will be a bit more difficult to

incorporate into the generalized likelihood ratio models. One potential

method is to define a standard set of shapes and maximize over the

discrete members of that set.

Second, if the background is not smooth, our assumption of known range to

background is no longer valid. Then a ranging radar with very good range

resolution, Ir, might make many more errors because it used the wrong bins

for counting the background hits, K. One solution to this problem could

'I
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be to assume the background is only reasonably smooth and expand the size

of the set of background range bins. That is, increase for the same Q,
QBB

then perform a maximization over the QBbins similar to the target

"- maximization to get a value for k. However, since the correct bin number

changes from one scan line to the next and may now also change within a

scan line since the background is not smooth, this maximization will be

much more difficult to define and perform.

Third, both target and background could have non-uniform reflectivity, so

CNRt and CNRb would be functions of angular location (vary by pixel). We

have assumed throughout the thesis the CNRs are independent of position:

the target and background have uniform reflectivity. Particularly for the

background, which is much larger than the small targets we used in this

thesis, this assumption is probably not valid in any real problem of

interest.

K .C

lo
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